Species richnessSpecies richness is the number of different species represented in an ecological community, landscape or region. Species richness is simply a count of species, and it does not take into account the abundances of the species or their relative abundance distributions. Species richness is sometimes considered synonymous with species diversity, but the formal metric species diversity takes into account both species richness and species evenness. Depending on the purposes of quantifying species richness, the individuals can be selected in different ways.
PolyphylyA polyphyletic group is an assemblage of organisms or other evolving elements that is of mixed evolutionary origin. The term is often applied to groups that share similar features known as homoplasies, which are explained as a result of convergent evolution. The arrangement of the members of a polyphyletic group is called a polyphyly ˈpɒlɪˌfaɪli. It is contrasted with monophyly and paraphyly. For example, the biological characteristic of warm-bloodedness evolved separately in the ancestors of mammals and the ancestors of birds; "warm-blooded animals" is therefore a polyphyletic grouping.
Type speciesIn zoological nomenclature, a type species (species typica) is the species name with which the name of a genus or subgenus is considered to be permanently taxonomically associated, i.e., the species that contains the biological type specimen (or specimens). A similar concept is used for suprageneric groups and called a type genus. In botanical nomenclature, these terms have no formal standing under the code of nomenclature, but are sometimes borrowed from zoological nomenclature.
ProtorosauriaProtorosauria is an extinct polyphyletic group of archosauromorph reptiles from the latest Middle Permian (Capitanian stage) to the end of the Late Triassic (Rhaetian stage) of Asia, Europe and North America. It was named by the English anatomist and paleontologist Thomas Henry Huxley in 1871 as an order, originally to solely contain Protorosaurus. Other names which were once considered equivalent to Protorosauria include Prolacertiformes and Prolacertilia.
Evolutionary gradeA grade is a taxon united by a level of morphological or physiological complexity. The term was coined by British biologist Julian Huxley, to contrast with clade, a strictly phylogenetic unit. An evolutionary grade is a group of species united by morphological or physiological traits, that has given rise to another group that has major differences from the ancestral condition, and is thus not considered part of the ancestral group, while still having enough similarities that we can group them under the same clade.
ProtistologyProtistology is a scientific discipline devoted to the study of protists, a highly diverse group of eukaryotic organisms. All eukaryotes apart from animals, plants and fungi are considered protists. Its field of study therefore overlaps with the more traditional disciplines of phycology, mycology, and protozoology, just as protists embrace mostly unicellular organisms described as algae, some organisms regarded previously as primitive fungi, and protozoa ("animal" motile protists lacking chloroplasts).
EuarchontogliresEuarchontoglires (portmanteau of Euarchonta + Glires) (synonymous with Supraprimates) is a clade and a superorder of mammals, the living members of which belong to one of the five following groups: rodents, lagomorphs, treeshrews, primates, and colugos. The Euarchontoglires clade is based on DNA sequence analyses and retrotransposon markers that combine the clades Glires (Rodentia + Lagomorpha) and Euarchonta (Scandentia + Primates + Dermoptera). It is usually discussed without a taxonomic rank but has been called a cohort, magnorder, or superorder.
Keystone speciesA keystone species is a species that has a disproportionately large effect on its natural environment relative to its abundance, a concept introduced in 1969 by the zoologist Robert T. Paine. Keystone species play a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community. Without keystone species, the ecosystem would be dramatically different or cease to exist altogether.
Distance matrices in phylogenyDistance matrices are used in phylogeny as non-parametric distance methods and were originally applied to phenetic data using a matrix of pairwise distances. These distances are then reconciled to produce a tree (a phylogram, with informative branch lengths). The distance matrix can come from a number of different sources, including measured distance (for example from immunological studies) or morphometric analysis, various pairwise distance formulae (such as euclidean distance) applied to discrete morphological characters, or genetic distance from sequence, restriction fragment, or allozyme data.
Basal (phylogenetics)In phylogenetics, basal is the direction of the base (or root) of a rooted phylogenetic tree or cladogram. The term may be more strictly applied only to nodes adjacent to the root, or more loosely applied to nodes regarded as being close to the root. Note that extant taxa that lie on branches connecting directly to the root are not more closely related to the root than any other extant taxa. While there must always be two or more equally "basal" clades sprouting from the root of every cladogram, those clades may differ widely in taxonomic rank, species diversity, or both.