Publication

A heuristic for global nonlinear optimization

Abstract

The proposed heuristic combines a variable neighborhood search (VNS) framework with a local search performed by a trust-region algorithm. The curvature of the function is exploited to generate the neighborhoods. Numerical results illustrate an excellent behavior of the method compared to recent heuristics proposed in the literature.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Heuristic
A heuristic (hjʊˈrɪstɪk; ), or heuristic technique, is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, short-term goal or approximation. Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution. Heuristics can be mental shortcuts that ease the cognitive load of making a decision.
Heuristic (psychology)
Heuristics is the process by which humans use mental short cuts to arrive at decisions. Heuristics are simple strategies that humans, animals, organizations, and even machines use to quickly form judgments, make decisions, and find solutions to complex problems. Often this involves focusing on the most relevant aspects of a problem or situation to formulate a solution. While heuristic processes are used to find the answers and solutions that are most likely to work or be correct, they are not always right or the most accurate.
Curvature
In mathematics, curvature is any of several strongly related concepts in geometry. Intuitively, the curvature is the amount by which a curve deviates from being a straight line, or a surface deviates from being a plane. For curves, the canonical example is that of a circle, which has a curvature equal to the reciprocal of its radius. Smaller circles bend more sharply, and hence have higher curvature. The curvature at a point of a differentiable curve is the curvature of its osculating circle, that is the circle that best approximates the curve near this point.
Show more
Related publications (53)

Indentation and stability of woven domes

Pedro Miguel Nunes Pereira de Almeida Reis, Célestin Vallat, Tian Chen, Tomohiko Sano, Samuel Jean Bernard Poincloux

Discrete domes are doubly curved structures comprising a network of beam-like elements. We study the mechanics of discrete domes made of ribbons woven in a pentagonal triaxial pattern. Experiments and finite element simulations are performed to characteriz ...
ELSEVIER2023

Optimizing the mitigation of epidemic spreading through targeted adoption of contact tracing apps

Andrea Santoro

The ongoing COVID-19 pandemic is the first epidemic in human history in which digital contact tracing has been deployed at a global scale. Tracking and quarantining all the contacts of individuals who test positive for a virus can help slow down an epidemi ...
AMER PHYSICAL SOC2022

Computational Design of Weingarten Surfaces

Mark Pauly, Davide Pellis

In this paper we study Weingarten surfaces and explore their potential for fabrication-aware design in freeform architecture. Weingarten surfaces are characterized by a functional relation between their principal curvatures that implicitly defines approxim ...
ASSOC COMPUTING MACHINERY2021
Show more
Related MOOCs (10)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.