Publication

Discrete choice models with multiplicative error terms

Michel Bierlaire
2006
Report or working paper
Abstract

We propose a multiplicative specification of a discrete choice model that renders choice probabilities independent of the scale of the utility. The scale can thus be random with unspecified distribution. The model mostly outperforms the classical additive formulation over a range of stated choice data sets. In some cases, the improvement in likelihood is greater than that obtained from adding observed and unobserved heterogeneity to the additive specification. The multiplicative specification makes it unnecessary to capture scale heterogeneity and, consequently, yields a significant potential for reducing model complexity in the presence of heteroscedasticity. Thus the proposed multiplicative formulation should be a useful supplement to the techniques available for the analysis of discrete choices.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Discrete Fourier transform
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies.
Discrete choice
In economics, discrete choice models, or qualitative choice models, describe, explain, and predict choices between two or more discrete alternatives, such as entering or not entering the labor market, or choosing between modes of transport. Such choices contrast with standard consumption models in which the quantity of each good consumed is assumed to be a continuous variable. In the continuous case, calculus methods (e.g. first-order conditions) can be used to determine the optimum amount chosen, and demand can be modeled empirically using regression analysis.
Computational complexity
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Show more
Related publications (33)

A greedy and distributable approach to the Lexicographic Bottleneck Assignment Problem with conditions on exactness

Tony Alan Wood

Solving the Lexicographic Bottleneck Assignment Problem (LexBAP) typically relies on centralised computation with order complexity. We consider the Sequential Bottleneck Assignment Problem (SeqBAP), which yields a greedy solution to the LexBAP and discuss ...
Elsevier2022

FANOK: Knockoffs in Linear Time

Quentin Rebjock

We describe a series of algorithms that efficiently implement Gaussian model-X knockoffs to control the false discovery rate on large-scale feature selection problems. Identifying the knockoff distribution requires solving a large-scale semidefinite progra ...
SIAM PUBLICATIONS2021

Computation Of A 30750-Bit Binary Field Discrete Logarithm

Arjen Lenstra, Robert Granger, Thorsten Kleinjung, Benjamin Pierre Charles Wesolowski

This paper reports on the computation of a discrete logarithm in the finite field F-230750, breaking by a large margin the previous record, which was set in January 2014 by a computation in F-29234. The present computation made essential use of the elimina ...
AMER MATHEMATICAL SOC2021
Show more
Related MOOCs (15)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.