Bounded operatorIn functional analysis and operator theory, a bounded linear operator is a linear transformation between topological vector spaces (TVSs) and that maps bounded subsets of to bounded subsets of If and are normed vector spaces (a special type of TVS), then is bounded if and only if there exists some such that for all The smallest such is called the operator norm of and denoted by A bounded operator between normed spaces is continuous and vice versa. The concept of a bounded linear operator has been extended from normed spaces to all topological vector spaces.
Euclidean domainIn mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. This generalized Euclidean algorithm can be put to many of the same uses as Euclid's original algorithm in the ring of integers: in any Euclidean domain, one can apply the Euclidean algorithm to compute the greatest common divisor of any two elements.
Axiom of unionIn axiomatic set theory, the axiom of union is one of the axioms of Zermelo–Fraenkel set theory. This axiom was introduced by Ernst Zermelo. The axiom states that for each set x there is a set y whose elements are precisely the elements of the elements of x. In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: or in words: Given any set A, there is a set B such that, for any element c, c is a member of B if and only if there is a set D such that c is a member of D and D is a member of A.
Axiom of pairingIn axiomatic set theory and the branches of logic, mathematics, and computer science that use it, the axiom of pairing is one of the axioms of Zermelo–Fraenkel set theory. It was introduced by as a special case of his axiom of elementary sets. In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: In words: Given any object A and any object B, there is a set C such that, given any object D, D is a member of C if and only if D is equal to A or D is equal to B.
Bundle metricIn differential geometry, the notion of a metric tensor can be extended to an arbitrary vector bundle, and to some principal fiber bundles. This metric is often called a bundle metric, or fibre metric. If M is a topological manifold and pi : E → M a vector bundle on M, then a metric on E is a bundle map k : E ×M E → M × R from the fiber product of E with itself to the trivial bundle with fiber R such that the restriction of k to each fibre over M is a nondegenerate bilinear map of vector spaces.
Tarski's axiomsTarski's axioms, due to Alfred Tarski, are an axiom set for the substantial fragment of Euclidean geometry that is formulable in first-order logic with identity, and requiring no set theory (i.e., that part of Euclidean geometry that is formulable as an elementary theory). Other modern axiomizations of Euclidean geometry are Hilbert's axioms and Birkhoff's axioms. Early in his career Tarski taught geometry and researched set theory.
Hilbert's axiomsHilbert's axioms are a set of 20 assumptions proposed by David Hilbert in 1899 in his book Grundlagen der Geometrie (tr. The Foundations of Geometry) as the foundation for a modern treatment of Euclidean geometry. Other well-known modern axiomatizations of Euclidean geometry are those of Alfred Tarski and of George Birkhoff.
Open setIn mathematics, an open set is a generalization of an open interval in the real line. In a metric space (a set along with a distance defined between any two points), an open set is a set that, along with every point P, contains all points that are sufficiently near to P (that is, all points whose distance to P is less than some value depending on P). More generally, an open set is a member of a given collection of subsets of a given set, a collection that has the property of containing every union of its members, every finite intersection of its members, the empty set, and the whole set itself.
Geometric calculusIn mathematics, geometric calculus extends the geometric algebra to include differentiation and integration. The formalism is powerful and can be shown to encompass other mathematical theories including vector calculus, differential geometry, and differential forms. With a geometric algebra given, let and be vectors and let be a multivector-valued function of a vector. The directional derivative of along at is defined as provided that the limit exists for all , where the limit is taken for scalar .
Boundary (topology)In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points in the closure of S not belonging to the interior of S. An element of the boundary of S is called a boundary point of S. The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set S include and . Some authors (for example Willard, in General Topology) use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds.