Opérateur bornéEn mathématiques, la notion d'opérateur borné est un concept d'analyse fonctionnelle. Il s'agit d'une application linéaire L entre deux espaces vectoriels normés X et Y telle que l'image de la boule unité de X est une partie bornée de Y. On montre qu'ils s'identifient aux applications linéaires continues de X dans Y. L'ensemble des opérateurs bornés est muni d'une norme issue des normes de X et de Y, la norme d'opérateur. Une application linéaire L entre les espaces vectoriels normés X et Y est appelée opérateur borné quand l'ensemble est borné.
Anneau euclidienvignette|Statue d'Euclide à Oxford. En mathématiques et plus précisément en algèbre, dans le cadre de la théorie des anneaux, un anneau euclidien est un type particulier d'anneau commutatif intègre (voir aussi l'article anneau euclidien non commutatif). Un anneau est dit euclidien s'il est possible d'y définir une division euclidienne. Un anneau euclidien est toujours principal. Cette propriété est riche de conséquences : tout anneau principal vérifie l'identité de Bézout, le lemme d'Euclide, il est factoriel et satisfait les conditions du théorème fondamental de l'arithmétique.
Axiome de la réunionEn théorie des ensembles, l’axiome de la réunion (ou «axiome de la somme») est l'un des axiomes de la théorie des ensembles de Zermelo-Fraenkel, ZF. Il affirme que, pour tout ensemble A, il existe un ensemble qui contient tous les éléments des ensembles éléments de l'ensemble A, et seulement ceux-ci (le contexte est celui d'une théorie où tous les objets sont des ensembles, en particulier A est un ensemble d'ensembles, sinon il faut le préciser).
Axiome de la paireEn mathématiques, l'axiome de la paire est l'un des axiomes de la théorie des ensembles, plus précisément des théories des ensembles de Zermelo et de Zermelo-Fraenkel. Essentiellement, l'axiome affirme que : deux ensembles quelconques peuvent toujours former un nouvel ensemble, que l'on appelle paire, auquel ils appartiennent tous deux et ce sont les seuls. Dans le langage formel de l'axiomatique de Zermelo-Fraenkel, l'axiome s'écrit : qui se lit en français : étant donné a et b deux ensembles, il existe un ensemble c tel que, pour tout ensemble x, x est un élément de c si et seulement si x est égal à a ou à b.
Métrique pseudo-riemannienneEn mathématiques et en physique, une métrique pseudo-riemannienne est une extension de la métrique riemannienne dans laquelle un certain nombre d'axes de l'espace qu'elle décrit ont des normes négatives. Si la métrique pseudo-riemanienne est en réalité un champ tensoriel, et donc varie d'un point à un autre, sa signature (le nombre d'axes dont les normes sont positives et le nombre d'axes dont les normes sont négatives), elle, ne peut jamais changer pour un même espace. Variété pseudo-riemannienne Catégori
Axiomes de TarskiLes axiomes de Tarski, dus à Alfred Tarski, sont un système d'axiomes pour la géométrie euclidienne exprimé en logique du premier ordre. Les prédicats utilisés dans le langage sont : le point y est entre les points x et z : (entre deux ou en anglais betweenness) ; la distance de x à y est égale à la distance de z à u : (congruence). A1: Réflexivité de la congruence A2: Transitivité de la congruence A3: Segment nul A4: Report de segment A5: Cinq segments A6: Identité A7: Axiome de Pasch A8: Plus petite dimension Il existe trois points non colinéaires, il n'existe donc pas de modèle de la théorie de dimension < 2.
Axiomes de Hilbertthumb|right|David Hilbert Dans un mémoire paru en 1899, Les fondements de la géométrie (Grundlagen der Geometrie), David Hilbert propose une axiomatisation de la géométrie euclidienne. Ce sont ces axiomes, qui ont été révisés au cours des éditions successives par Hilbert lui-même, ou des axiomes directement inspirés de sa présentation que l'on appelle axiomes de Hilbert.
Ouvert (topologie)En mathématiques et plus particulièrement en topologie générale, un ensemble ouvert, aussi appelé une partie ouverte ou, plus fréquemment, un ouvert, est un sous-ensemble d'un espace topologique qui ne contient aucun point de sa frontière. L'ouvert est l'élément de base d'un espace topologique. Il existe plusieurs définitions des ouverts suivant le type d'espace concerné. Nous reprenons ici la définition pour le cas le plus général à savoir celui des espaces topologiques.
Analyse multivectorielleL’analyse géométrique, calcul géométrique, analyse multivectorielle, ou encore calcul multivectoriel, est une branche des mathématiques qui est aux structures d'algèbres géométriques ce que l'analyse vectorielle est aux espaces vectoriels. En substance, l'analyse géométrique considère des fonctions définies sur un espace vectoriel et à valeurs dans l'algèbre géométrique sous-tendue par cet espace, et s'intéresse aux limites exhibées par ces fonctions dans le cadre du calcul infinitésimal.
Frontière (topologie)En topologie, la frontière d'un ensemble (aussi appelé parfois "le bord d'un ensemble") est constituée des points qui, de façon intuitive, sont « situés au bord » de cet ensemble, c’est-à-dire qui peuvent être « approchés » à la fois par l'intérieur et l'extérieur de cet ensemble. Soit S un sous-ensemble d'un espace topologique (E, T).