Prüfer groupIn mathematics, specifically in group theory, the Prüfer p-group or the p-quasicyclic group or p∞-group, Z(p∞), for a prime number p is the unique p-group in which every element has p different p-th roots. The Prüfer p-groups are countable abelian groups that are important in the classification of infinite abelian groups: they (along with the group of rational numbers) form the smallest building blocks of all divisible groups. The groups are named after Heinz Prüfer, a German mathematician of the early 20th century.
Abelian extensionIn abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is solvable, i.e., if the group can be decomposed into a series of normal extensions of an abelian group. Every finite extension of a finite field is a cyclic extension.
Core (group theory)In group theory, a branch of mathematics, a core is any of certain special normal subgroups of a group. The two most common types are the normal core of a subgroup and the p-core of a group. For a group G, the normal core or normal interior of a subgroup H is the largest normal subgroup of G that is contained in H (or equivalently, the intersection of the conjugates of H). More generally, the core of H with respect to a subset S ⊆ G is the intersection of the conjugates of H under S, i.e.
Projective moduleIn mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, by keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below. Every free module is a projective module, but the converse fails to hold over some rings, such as Dedekind rings that are not principal ideal domains.
Maximal subgroupIn mathematics, the term maximal subgroup is used to mean slightly different things in different areas of algebra. In group theory, a maximal subgroup H of a group G is a proper subgroup, such that no proper subgroup K contains H strictly. In other words, H is a maximal element of the partially ordered set of subgroups of G that are not equal to G. Maximal subgroups are of interest because of their direct connection with primitive permutation representations of G.
Sylow theoremsIn mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups. For a prime number , a Sylow p-subgroup (sometimes p-Sylow subgroup) of a group is a maximal -subgroup of , i.
Characteristic subgroupIn mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. Because every conjugation map is an inner automorphism, every characteristic subgroup is normal; though the converse is not guaranteed. Examples of characteristic subgroups include the commutator subgroup and the center of a group. A subgroup H of a group G is called a characteristic subgroup if for every automorphism φ of G, one has φ(H) ≤ H; then write H char G.
Abelian groupIn mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.
Restricted representationIn group theory, restriction forms a representation of a subgroup using a known representation of the whole group. Restriction is a fundamental construction in representation theory of groups. Often the restricted representation is simpler to understand. Rules for decomposing the restriction of an irreducible representation into irreducible representations of the subgroup are called branching rules, and have important applications in physics.
Group (mathematics)In mathematics, a group is a non-empty set with an operation that satisfies the following constraints: the operation is associative, has an identity element, and every element of the set has an inverse element. Many mathematical structures are groups endowed with other properties. For example, the integers with the addition operation is an infinite group, which is generated by a single element called 1 (these properties characterize the integers in a unique way).