Summary
In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups. For a prime number , a Sylow p-subgroup (sometimes p-Sylow subgroup) of a group is a maximal -subgroup of , i.e., a subgroup of that is a p-group (meaning its cardinality is a power of or equivalently, the order of every group element is a power of ) that is not a proper subgroup of any other -subgroup of . The set of all Sylow -subgroups for a given prime is sometimes written . The Sylow theorems assert a partial converse to Lagrange's theorem. Lagrange's theorem states that for any finite group the order (number of elements) of every subgroup of divides the order of . The Sylow theorems state that for every prime factor of the order of a finite group , there exists a Sylow -subgroup of of order , the highest power of that divides the order of . Moreover, every subgroup of order is a Sylow -subgroup of , and the Sylow -subgroups of a group (for a given prime ) are conjugate to each other. Furthermore, the number of Sylow -subgroups of a group for a given prime is congruent to 1 (mod ). The Sylow theorems are a powerful statement about the structure of groups in general, but are also powerful in applications of finite group theory. This is because they give a method for using the prime decomposition of the cardinality of a finite group to give statements about the structure of its subgroups: essentially, it gives a technique to transport basic number-theoretic information about a group to its group structure. From this observation, classifying finite groups becomes a game of finding which combinations/constructions of groups of smaller order can be applied to construct a group.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (18)
MATH-310: Algebra
This is an introduction to modern algebra: groups, rings and fields.
MATH-211: Group Theory
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
PHYS-314: Quantum physics II
The aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
Show more