In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups.
For a prime number , a Sylow p-subgroup (sometimes p-Sylow subgroup) of a group is a maximal -subgroup of , i.e., a subgroup of that is a p-group (meaning its cardinality is a power of or equivalently, the order of every group element is a power of ) that is not a proper subgroup of any other -subgroup of . The set of all Sylow -subgroups for a given prime is sometimes written .
The Sylow theorems assert a partial converse to Lagrange's theorem. Lagrange's theorem states that for any finite group the order (number of elements) of every subgroup of divides the order of . The Sylow theorems state that for every prime factor of the order of a finite group , there exists a Sylow -subgroup of of order , the highest power of that divides the order of . Moreover, every subgroup of order is a Sylow -subgroup of , and the Sylow -subgroups of a group (for a given prime ) are conjugate to each other. Furthermore, the number of Sylow -subgroups of a group for a given prime is congruent to 1 (mod ).
The Sylow theorems are a powerful statement about the structure of groups in general, but are also powerful in applications of finite group theory. This is because they give a method for using the prime decomposition of the cardinality of a finite group to give statements about the structure of its subgroups: essentially, it gives a technique to transport basic number-theoretic information about a group to its group structure. From this observation, classifying finite groups becomes a game of finding which combinations/constructions of groups of smaller order can be applied to construct a group.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving transformations. Important examples of finite groups include cyclic groups and permutation groups. The study of finite groups has been an integral part of group theory since it arose in the 19th century.
In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p. Abelian p-groups are also called p-primary or simply primary. A finite group is a p-group if and only if its order (the number of its elements) is a power of p.
In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of n elements is called the alternating group of degree n, or the alternating group on n letters and denoted by A_n or Alt(n). For n > 1, the group An is the commutator subgroup of the symmetric group Sn with index 2 and has therefore n!/2 elements. It is the kernel of the signature group homomorphism sgn : Sn → explained under symmetric group. The group An is abelian if and only if n ≤ 3 and simple if and only if n = 3 or n ≥ 5.
Explores the relationship between p-torsion and p-divisibility in group theory, highlighting implications of p-divisibility in exact sequences of abelian groups.
Let be a simple exceptional algebraic group of adjoint type over an algebraically closed field of characteristic and let be a subgroup of containing a regular unipotent element of . By a theorem of Testerman, is contained in a connected subgroup of of type ...
The Cremona group is the group of birational transformations of the complex projective plane. In this paper we classify its subgroups that consist only of elliptic elements using elementary model theory. This yields in particular a description of the struc ...
2021
Developmental cell death plays an important role in the construction of functional neural circuits. In vertebrates, the canonical view proposes a selection of the surviving neurons through stochastic competition for target-derived neurotrophic signals, imp ...