Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Using a global approach for solving an ion gyrokinetic model in three-dimensional geometry the linear stability and structure of ion-temperature-gradient (ITG) modes in the configuration of the stellarator Wendelstein 7-X (W7-X) [G. Grieger , in Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525.] is studied. The time evolution of electrostatic perturbations is solved as an initial value problem with a particle-in-cell deltaf method. The vacuum magnetohydrodynamic equilibrium is calculated by the code VMEC [S. P. Hirshman and D. K. Lee, Comput. Phys. Commun. 39, 161 (1986)]. In this work the most unstable ITG mode in W7-X is presented. This mode has a pronounced ballooning-type structure; however, it is not tokamak-like. A driving mechanism analysis using the energy transfer shows that the contribution of curvature effects is non-negligible. The growth rate and the mixing-length estimate for transport are compared with those for ITG modes found in axisymmetric geometries. (C) 2004 American Institute of Physics.
Josephine Anna Eleanor Hughes, Max Mirko Polzin
Laurent Villard, Emmanuel Lanti