Egyptian fractionAn Egyptian fraction is a finite sum of distinct unit fractions, such as That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other. The value of an expression of this type is a positive rational number ; for instance the Egyptian fraction above sums to . Every positive rational number can be represented by an Egyptian fraction.
Phase (matter)In the physical sciences, a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. (See .) More precisely, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform.
PropellantA propellant (or propellent) is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass.
Particle in a ringIn quantum mechanics, the case of a particle in a one-dimensional ring is similar to the particle in a box. The Schrödinger equation for a free particle which is restricted to a ring (technically, whose configuration space is the circle ) is Using polar coordinates on the 1-dimensional ring of radius R, the wave function depends only on the angular coordinate, and so Requiring that the wave function be periodic in with a period (from the demand that the wave functions be single-valued functions on the circle), and that they be normalized leads to the conditions and Under these conditions, the solution to the Schrödinger equation is given by The energy eigenvalues are quantized because of the periodic boundary conditions, and they are required to satisfy or The eigenfunction and eigenenergies are where Therefore, there are two degenerate quantum states for every value of (corresponding to ).