Fraction égyptienneUne fraction égyptienne, ou unitaire, est une fraction de numérateur égal à un et de dénominateur entier strictement positif. Un problème classique est d'écrire une fraction comme somme de fractions égyptiennes avec des dénominateurs tous différents, que l'on nomme développement en fractions égyptiennes ou plus simplement développement égyptien. Tous les nombres rationnels positifs peuvent être écrits sous cette forme et ce, d'une infinité de façons différentes. Par exemple .
Phase (thermodynamique)thumb|right|Un système composé d'eau et d'huile, à l'équilibre, est composé de deux phases distinctes (biphasique). En thermodynamique, on utilise la notion de phase pour distinguer les différents états possibles d'un système. Selon le contexte et les auteurs, le mot est utilisé pour désigner plusieurs choses, parfois de natures différentes, mais étroitement liées. Si un système thermodynamique est entièrement homogène, physiquement et chimiquement, on dit qu'il constitue une seule phase.
PropergolUn propergol est un produit de propulsion, constitué d'un mélange de comburant et de combustible, les ergols. La réaction chimique, entre cet oxydant et ce réducteur, fournira l'énergie au moteur-fusée. Les constituants peuvent se présenter à l'état de gaz, de liquide, de solide ou de plasma. Un monergol est un ergol de formation souvent endothermique, qui a la propriété de se suffire à lui-même pour assurer la réaction chimique, comme l'hydrazine. Lorsque la présence d'un catalyseur est nécessaire, il porte alors le nom de catergol.
Particle in a ringIn quantum mechanics, the case of a particle in a one-dimensional ring is similar to the particle in a box. The Schrödinger equation for a free particle which is restricted to a ring (technically, whose configuration space is the circle ) is Using polar coordinates on the 1-dimensional ring of radius R, the wave function depends only on the angular coordinate, and so Requiring that the wave function be periodic in with a period (from the demand that the wave functions be single-valued functions on the circle), and that they be normalized leads to the conditions and Under these conditions, the solution to the Schrödinger equation is given by The energy eigenvalues are quantized because of the periodic boundary conditions, and they are required to satisfy or The eigenfunction and eigenenergies are where Therefore, there are two degenerate quantum states for every value of (corresponding to ).