Phenomenological models of synaptic plasticity based on spike timing
Related publications (58)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic pla ...
Spike synchronization is thought to have a constructive role for feature integration, attention, associative learning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoretical studies on spike-timing-dependent plasti ...
We derive a plausible learning rule updating the synaptic efficacies for feedforward, feedback and lateral connections between observed and latent neurons. Operating in the context of a generative model for distributions of spike sequences, the learning me ...
Although neocortex underlies higher-order brain functions, little is known about the synaptic interactions that drive neocortical microcircuit function in vivo. The neocortex is spontaneously active in vivo so I explored how such spontaneous network activi ...
How learning and memory is achieved in the brain is a central question in neuroscience. Key to today’s research into information storage in the brain is the concept of synaptic plasticity, a notion that has been heavily influenced by Hebb’s (1949) postulat ...
Spike Timing Dependent Plasticity (STDP) is a temporally asymmetric form of Hebbian learning induced by tight temporal correlations between the spikes of pre- and postsynaptic neurons. As with other forms of synaptic plasticity, it is widely believed that ...
Hebbian changes of excitatory synapses are driven by and further enhance correlations between pre- and postsynaptic activities. Hence, Hebbian plasticity forms a positive feedback loop that can lead to instability in simulated neural networks. To keep acti ...
Neocortical layer 5 (L5) pyramidal cells have at least two spike initiation zones: Na(+) spikes are generated near the soma, and Ca(2+) spikes at the apical dendritic tuft. These spikes interact with each other and serve as signals for synaptic plasticity. ...
Neocortical layer 5 (L5) pyramidal cells have at least two spike initiation zones: Na+ spikes are generated near the soma, and Ca2+ spikes at the apical dendritic tuft. These spikes interact with each other and serve as signals for synaptic plasticity. The ...
Synaptic strength depresses for low and potentiates for high activation of the postsynaptic neuron. This feature is a key property of the Bienenstock-Cooper-Munro (BCM) synaptic learning rule, which has been shown to maximize the selectivity of the postsyn ...