Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Human motion analysis and synthesis is integral to many computer vision applications, from autonomous driving to sports analysis. In this thesis, we address several problems in this domain. First we consider active viewpoint selection for pose estimation w ...
Cross-resolution face recognition has become a challenging problem for modern deep face recognition systems. It aims at matching a low-resolution probe image with high-resolution gallery images registered in a database. Existing methods mainly leverage pri ...
Accurately estimating 3D human pose (3D HPE) and joint locations using only 2D keypoints is challenging. The noise in the predictions produced by conventional 2D human pose estimators often impeded the accuracy. In this paper, we present a diffusion-based ...
Measuring neural oscillatory synchrony facilitates our understanding of complex brain networks and the underlying pathological states. Altering the cross-regional synchrony-as a measure of brain network connectivity-via phase-locked deep brain stimulation ...
Object-centric learning has gained significant attention over the last years as it can serve as a powerful tool to analyze complex scenes as a composition of simpler entities. Well-established tasks in computer vision, such as object detection or instance ...
We propose an end-to-end Multitask Learning Transformer framework, named MulT, to simultaneously learn multiple high-level vision tasks, including depth estimation, semantic segmentation, reshading, surface normal estimation, 2D keypoint detection, and edg ...
During the Artificial Intelligence (AI) revolution of the past decades, deep neural networks have been widely used and have achieved tremendous success in visual recognition. Unfortunately, deploying deep models is challenging because of their huge model s ...
Early and accurate detection of epileptic seizures is an extremely important therapeutic goal due to the severity of complications it can prevent. To this end, a low-power machine learning-based seizure detection implemented on an FPGA is proposed in this ...
Effective fall-detection and classification systems are vital in mitigating severe medical and economical consequences of falls to people in the fall risk groups. One class of such systems is based on wearable sensors. While there is a vast amount of acade ...
We present an image-based pipeline for generating geometrical digital twins (GDTs) of stone masonry elements with detail down to the stone level. For this purpose, we acquire RGB images of the individual stones and of the wall during the construction phase ...