Highway engineeringHighway engineering (also known as roadway engineering and street engineering) is a professional engineering discipline branching from the civil engineering subdiscipline of transportation engineering that involves the planning, design, construction, operation, and maintenance of roads, highways, streets, bridges, and tunnels to ensure safe and effective transportation of people and goods. Highway engineering became prominent towards the latter half of the 20th century after World War II.
Road surfaceA road surface (English), or pavement (American), is the durable surface material laid down on an area intended to sustain vehicular or foot traffic, such as a road or walkway. In the past, gravel road surfaces, macadam, hoggin, cobblestone and granite setts were extensively used, but these have mostly been replaced by asphalt or concrete laid on a compacted base course. Asphalt mixtures have been used in pavement construction since the beginning of the 20th century and are of two types: metalled (hard-surfaced) and unmetalled roads.
Group actionIn mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group acts on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it.
Developing countryA developing country is a sovereign state with a less developed industrial base and a lower Human Development Index (HDI) relative to other countries. However, this definition is not universally agreed upon. There is also no clear agreement on which countries fit this category. The terms low and middle-income country (LMIC) and newly emerging economy (NEE) are often used interchangeably but refers only to the economy of the countries.
Group (mathematics)In mathematics, a group is a non-empty set with an operation that satisfies the following constraints: the operation is associative, has an identity element, and every element of the set has an inverse element. Many mathematical structures are groups endowed with other properties. For example, the integers with the addition operation is an infinite group, which is generated by a single element called 1 (these properties characterize the integers in a unique way).
Dihedral groupIn mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. The notation for the dihedral group differs in geometry and abstract algebra. In geometry, D_n or Dih_n refers to the symmetries of the n-gon, a group of order 2n. In abstract algebra, D_2n refers to this same dihedral group.
Reductive groupIn mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n).
Group theoryIn abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.
Solvable groupIn mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup. Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equation. Specifically, a polynomial equation is solvable in radicals if and only if the corresponding Galois group is solvable (note this theorem holds only in characteristic 0).
Road surface markingRoad surface marking is any kind of device or material that is used on a road surface in order to convey official information; they are commonly placed with road marking machines (also referred to as road marking equipment or pavement marking equipment). They can also be applied in other facilities used by vehicles to mark parking spaces or designate areas for other uses. In some countries and areas (France, Italy, Czech Republic, Slovakia etc.), road markings are conceived as horizontal traffic signs, as opposed to vertical traffic signs placed on posts.