Proper velocityIn relativity, proper velocity (also known as celerity) w of an object relative to an observer is the ratio between observer-measured displacement vector and proper time τ elapsed on the clocks of the traveling object: It is an alternative to ordinary velocity, the distance per unit time where both distance and time are measured by the observer. The two types of velocity, ordinary and proper, are very nearly equal at low speeds. However, at high speeds proper velocity retains many of the properties that velocity loses in relativity compared with Newtonian theory.
Brillouin scatteringBrillouin scattering (also known as Brillouin light scattering or BLS), named after Léon Brillouin, refers to the interaction of light with the material waves in a medium (e.g. electrostriction and magnetostriction). It is mediated by the refractive index dependence on the material properties of the medium; as described in optics, the index of refraction of a transparent material changes under deformation (compression-distension or shear-skewing).
Optical fiberAn optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data transfer rates) than electrical cables.
Speed of lightThe speed of light in vacuum, commonly denoted c, is a universal physical constant that is exactly equal to ). According to the special theory of relativity, c is the upper limit for the speed at which conventional matter or energy (and thus any signal carrying information) can travel through space. All forms of electromagnetic radiation, including visible light, travel at the speed of light. For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and very sensitive measurements, their finite speed has noticeable effects.
LightLight or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahertz, between the infrared (with longer wavelengths) and the ultraviolet (with shorter wavelengths). In physics, the term "light" may refer more broadly to electromagnetic radiation of any wavelength, whether visible or not. In this sense, gamma rays, X-rays, microwaves and radio waves are also light.
Escape velocityIn celestial mechanics, escape velocity or escape speed is the minimum speed needed for a free, non-propelled object to escape from the gravitational influence of a primary body, thus reaching an infinite distance from it. It is typically stated as an ideal speed, ignoring atmospheric friction. Although the term "escape velocity" is common, it is more accurately described as a speed than a velocity because it is independent of direction.
TachyonA tachyon (ˈtækiɒn) or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are inconsistent with the known laws of physics. If such particles did exist they could be used to send signals faster than light. According to the theory of relativity this would violate causality, leading to logical paradoxes such as the grandfather paradox.
Treatise on LightTreatise on Light: In Which Are Explained the Causes of That Which Occurs in Reflection & Refraction (Traité de la Lumière: Où Sont Expliquées les Causes de ce qui Luy Arrive Dans la Reflexion & Dans la Refraction) is a book written by Dutch polymath Christiaan Huygens that was published in French in 1690. The book describes Huygens's conception of the nature of light propagation which makes it possible to explain the laws of geometrical optics shown in Descartes's Dioptrique, which Huygens aimed to replace.
BackscatterIn physics, backscatter (or backscattering) is the reflection of waves, particles, or signals back to the direction from which they came. It is usually a diffuse reflection due to scattering, as opposed to specular reflection as from a mirror, although specular backscattering can occur at normal incidence with a surface. Backscattering has important applications in astronomy, photography, and medical ultrasonography. The opposite effect is forward scatter, e.g. when a translucent material like a cloud diffuses sunlight, giving soft light.
Slow lightSlow light is the propagation of an optical pulse or other modulation of an optical carrier at a very low group velocity. Slow light occurs when a propagating pulse is substantially slowed by the interaction with the medium in which the propagation takes place. Group velocities below c were known to be possible as far back as 1880, but could not be realized in a useful manner until 1991, when Stephen Harris and collaborators demonstrated electromagnetically induced transparency in trapped strontium atoms.