In physics, backscatter (or backscattering) is the reflection of waves, particles, or signals back to the direction from which they came. It is usually a diffuse reflection due to scattering, as opposed to specular reflection as from a mirror, although specular backscattering can occur at normal incidence with a surface. Backscattering has important applications in astronomy, photography, and medical ultrasonography. The opposite effect is forward scatter, e.g. when a translucent material like a cloud diffuses sunlight, giving soft light. Backscattering can occur in quite different physical situations, where the incoming waves or particles are deflected from their original direction by different mechanisms: Diffuse reflection from large particles and Mie scattering, causing alpenglow and gegenschein, and showing up in weather radar; Inelastic collisions between electromagnetic waves and the transmitting medium (Brillouin scattering and Raman scattering), important in fiber optics, see below; Elastic collisions between accelerated ions and a sample (Rutherford backscattering) Bragg diffraction from crystals, used in inelastic scattering experiments (neutron backscattering, X-ray backscattering spectroscopy); Compton scattering, used in Backscatter X-ray imaging. Stimulated backscatter, observed in non-linear optics, and described by a class of solutions to the three-wave equation. Sometimes, the scattering is more or less isotropic, i.e. the incoming particles are scattered randomly in various directions, with no particular preference for backward scattering. In these cases, the term "backscattering" just designates the detector location chosen for some practical reasons: in X-ray imaging, backscattering means just the opposite of transmission imaging; in inelastic neutron or X-ray spectroscopy, backscattering geometry is chosen because it optimizes the energy resolution; in astronomy, backscattered light is that which is reflected with a phase angle of less than 90°. In other cases, the scattering intensity is enhanced in backward direction.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
PHYS-607: Nonlinear fibre optics
Presentation of the different sources of optical nonlinearities in an optical fibre
PHYS-640: Neutron and X-ray Scattering of Quantum Materials
Neutron and X-ray scattering are some of the most powerful and versatile experimental methods to study the structure and dynamics of materials on the atomic scale. This course covers basic theory, ins
MSE-482: Optical properties of materials
Students will study fundamental principles of light-matter interaction and apply classical and quantum mechanical models for quantitative estimates. Optical phenomena in glasses, organic/inorganic sem
Show more
Related publications (206)
Related concepts (4)
Night sky
The night sky is the nighttime appearance of celestial objects like stars, planets, and the Moon, which are visible in a clear sky between sunset and sunrise, when the Sun is below the horizon. Natural light sources in a night sky include moonlight, starlight, and airglow, depending on location and timing. Aurorae light up the skies above the polar circles. Occasionally, a large coronal mass ejection from the Sun or simply high levels of solar wind may extend the phenomenon toward the Equator.
Optical fiber
An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data transfer rates) than electrical cables.
Raman scattering
Raman scattering or the Raman effect (ˈrɑːmən) is the inelastic scattering of photons by matter, meaning that there is both an exchange of energy and a change in the light's direction. Typically this effect involves vibrational energy being gained by a molecule as incident photons from a visible laser are shifted to lower energy. This is called normal Stokes Raman scattering. The effect is exploited by chemists and physicists to gain information about materials for a variety of purposes by performing various forms of Raman spectroscopy.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.