Publication

Dynamic stencil lithography on full wafer scale

Abstract

In this paper, the authors present a breakthrough extension of the stencil lithography tool and method. In the standard stencil lithography static mode, material is deposited through apertures in a membrane (stencil) on a substrate which is clamped to the stencil. In the novel dynamic mode, the stencil is repositioned with respect to the substrate inside the vacuum chamber and its motion is synchronized with the material deposition. This can be done either in a step-and-repeat or in a continuous mode. The authors present the first results proving the accurate x-y-z in situ positioning and movement of our stages during and in between patterning.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (28)
Pulsed laser deposition
Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique where a high-power pulsed laser beam is focused inside a vacuum chamber to strike a target of the material that is to be deposited. This material is vaporized from the target (in a plasma plume) which deposits it as a thin film on a substrate (such as a silicon wafer facing the target). This process can occur in ultra high vacuum or in the presence of a background gas, such as oxygen which is commonly used when depositing oxides to fully oxygenate the deposited films.
Evaporation (deposition)
Evaporation is a common method of thin-film deposition. The source material is evaporated in a vacuum. The vacuum allows vapor particles to travel directly to the target object (substrate), where they condense back to a solid state. Evaporation is used in microfabrication, and to make macro-scale products such as metallized plastic film. Evaporation involves two basic processes: a hot source material evaporates and condenses on the substrate. It resembles the familiar process by which liquid water appears on the lid of a boiling pot.
Physical vapor deposition
Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from a condensed phase to a vapor phase and then back to a thin film condensed phase. The most common PVD processes are sputtering and evaporation.
Show more
Related publications (35)

Plasma-Assisted Hybrid Vapour Deposition Technology for Thin Film Fabrication

Caroline Hain

Continuous development of thin film deposition technologies is essential for the fabrication of films that meet the specific requirements of their target applications and working conditions. Therefore, it is necessary to increase the number of accessible a ...
EPFL2023

Synthesis of metal oxide-overcoated carbon materials by liquid phase ALD and their applications in catalysis

Farzaneh Talebkeikhah

Coating nano particles and other substrates for efficiency enhancement, protection and obtaining new atomic structures is a widespread research topic in catalysis and material synthesis. Thus far, different approaches of coating, ranging from simplest to s ...
EPFL2023

Nanobridge Stencil Enabling High Resolution Arbitrarily Shaped Metallic Thin Films on Various Substrates

Jürgen Brugger, Giovanni Boero, Yi-Chiang Sun

Stencil lithography (SL), which uses a perforated membrane as a reusable shadow mask to locally add material patterns on substrates provides a simple but versatile approach for the fabrication of functional devices on a large variety of substrate materials ...
WILEY2022
Show more
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.