Physical vapor deposition (PVD), sometimes called physical vapor transport (PVT), describes a variety of vacuum deposition methods which can be used to produce thin films and coatings on substrates including metals, ceramics, glass, and polymers. PVD is characterized by a process in which the material transitions from a condensed phase to a vapor phase and then back to a thin film condensed phase. The most common PVD processes are sputtering and evaporation. PVD is used in the manufacturing of items which require thin films for optical, mechanical, electrical, acoustic or chemical functions. Examples include semiconductor devices such as thin-film solar cells, microelectromechanical devices such as thin film bulk acoustic resonator, aluminized PET film for food packaging and balloons, and titanium nitride coated cutting tools for metalworking. Besides PVD tools for fabrication, special smaller tools used mainly for scientific purposes have been developed. The source material is unavoidably also deposited on most other surfaces interior to the vacuum chamber, including the fixturing used to hold the parts. This is called overshoot. Cathodic arc deposition: a high-power electric arc discharged at the target (source) material blasts away some into highly ionized vapor to be deposited onto the workpiece. Electron-beam physical vapor deposition: the material to be deposited is heated to a high vapor pressure by electron bombardment in "high" vacuum and is transported by diffusion to be deposited by condensation on the (cooler) workpiece. Evaporative deposition: the material to be deposited is heated to a high vapor pressure by electrical resistance heating in "high" vacuum. Close-space sublimation, the material, and substrate are placed close to one another and radiatively heated. Pulsed laser deposition: a high-power laser ablates material from the target into a vapor. Thermal laser epitaxy: a continuous-wave laser evaporates individual, free-standing elemental sources which then condense upon a substrate.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (14)
MSE-465: Thin film fabrication technologies
The students will learn about the essential chemical, thermodynamic and physical mechanisms governing thin film growth, about the most important process techniques and their typical features, includin
MSE-619: Nanofabrication with focused electron and ion beams
Nanofabrication with focused charged particle beams (SEM, FIB) and their applications such as lithography, gas assisted deposition / etching, and milling are discussed and the limitations of these pro
MICRO-621: MOOC: Micro and Nanofabrication (MEMS)
Micro- and nanofabrication can be taught to students and professionals by textbooks and ex-cathedra lectures, but the real learning comes from seeing the manufacturing steps as they happen. This MOOC
Show more