Publication

Illuminant estimation and detection using near infrared

Sabine Süsstrunk
2009
Conference paper
Abstract

Digital camera sensors are sensitive to wavelengths ranging from the ultraviolet (200-400nm) to the near-infrared (700-100nm) bands. This range is, however, reduced because the aim of photographic cameras is to capture and reproduce the visible spectrum (400-700nm) only. Ultraviolet radiation is filtered out by the optical elements of the camera, while a specifically designed "hot-mirror" is placed in front of the sensor to prevent near-infrared contamination of the visible image. We propose that near-infrared data can actually prove remarkably useful in colour constancy, to estimate the incident illumination as well as providing to detect the location of different illuminants in a multiply lit scene. Looking at common illuminants spectral power distribution show that very strong differences exist between the near-infrared and visible bands, e.g., incandescent illumination peaks in the near-infrared while fluorescent sources are mostly confined to the visible band. We show that illuminants can be estimated by simply looking at the ratios of two images: a standard RGB image and a near-infrared only image. As the differences between illuminants are amplified in the near-infrared, this estimation proves to be more reliable than using only the visible band. Furthermore, in most multiple illumination situations, one of the light will be predominantly near-infrared emitting (e.g., flash, incandescent) while the other will be mostly visible emitting (e.g., fluorescent, skylight). Using near-infrared and RGB image ratios allow us to accurately pinpoint the location of diverse illuminant and recover a lighting map.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.