Light control and microcavity lasers based on quantum wires integrated in photonic-crystal cavities
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Periodic photonic structures have attracted much interest due to their versatility for controlling light propagation. The dispersion of photon modes in photonic lattices exhibits an energy band structure analo-gous to the electronic one in crystals. An imp ...
A hallmark of quantum control is the ability to manipulate quantum emission at the nanoscale. Through scanning tunneling microscopy-induced luminescence (STML), we are able to generate plasmonic light originating from inelastic tunneling processes that occ ...
Owing to their wide direct bandgap tenability, III-nitride (III-N) compound semiconductors have been proven instrumental in the development of blue light-emitting diodes that led to the so-called solid-state lighting revolution and blue laser diodes that a ...
Gallium phosphide (GaP) is an indirect-bandgap semiconductor used widely in solid-state lighting. Despite numerous intriguing optical properties-including large chi ((2)) and chi ((3)) coefficients, a high refractive index (>3) and transparency from visibl ...
Crystal phase engineering is an exciting pathway to enhance the properties of conventional semiconductors. Metastable SiGe presents a direct band gap well suited for optical devices whereas wurtzite (WZ) phosphide alloys enable efficient light emission in ...
Quantum Integrated Photonics (QIP) harnesses quantum-states of light on tiny chips, from generation to processing and eventual detection. Within this context, this thesis explores functional QIP elements resulting from the monolithic integration of semicon ...
We propose a mechanism to engineer an n-photon blockade in a nonlinear cavity with an n-photon parametric drive lambda(adagger n + an). When an n-photon-excitation resonance condition is satisfied, the presence of n photons in the cavity suppress ...
Avalanche multiphoton photoluminescence (AMPL) is observed from coupled Au–Al nanoantennas under intense laser pumping, which shows more than one order of magnitude emission intensity enhancement and distinct spectral features compared with ordinary metall ...
Amplified spontaneous emission (ASE) threshold in CsPbBr3 quantum dot films is systematically reduced by introducing high quality TiO2 compact layer grown by atomic-layer deposition. Uniform and pinhole-free TiO2 films of thickness 10, 20 and 50 nm are use ...
Progress in light-emitting diodes (LEDs) based on ZnO/GaN heterojunctions has run into several obstacles during the last twenty years. While both the energy bandgap and lattice parameter of the two semiconductors are favorable to the development of such de ...