Relation between substrate surface morphology and microcrystalline silicon solar cell performance
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
To overcome the worldwide challenges of climate change, photovoltaics is foreseen to play a significant role in the world electricity production. Nowadays, single junction crystalline silicon (c-Si) based solar cells hold the largest share of the global ph ...
Photovoltaic (PV) technology offers an economic and sustainable solution to the challenge of increasing energy demand in times of global warming. The world PV market is currently dominated by the homo-junction crystalline silicon (c-Si) PV technology based ...
Today more than ever the world needs clean energy sources and thus a fast deployment and scaling up of the photovoltaic industry. In this context improving solar cell efficiency plays a major role. In order to achieve the maximum single junction efficiency ...
In this contribution, we present an electron selective passivating contact metallised with a low temperature process to target front side applications in crystalline silicon (c-Si) solar cells. In addition to an interfacial silicon oxide (SiOx) and an in-s ...
2020
Today more than 90% of the global PV market is covered by c-Si solar cells which are limited by recombination losses at the metal-semiconductor interface. This recombination path can be avoided by separating the metal from the c-Si wafer by introducing a b ...
EPFL2018
Thin-film silicon solar cells are one possible answer to the increasing energy demand of today. Hydrogenated amorphous silicon (a-Si:H) plays a crucial role therein - as absorber layers, but also as doped layers to build p-i -n junctions. This thesis is de ...
EPFL2014
Crystalline silicon solar cells currently represent the largest part of the photovoltaic market. In response to the demand for higher efficiency devices, silicon heterojunction technology, which merges a crystalline silicon wafer with thin amorphous silico ...
EPFL2015
In the case of high photovoltaic (PV) penetration into the electricity grid, the energy produced by a PV system that is effectively used (useful energy) depends on the energy yield and on how this energy is managed to avoid detrimental effects occurring at ...
EPFL2016
,
There is tremendous interest in reducing losses caused by the metal contacts in silicon photovoltaics, particularly the optical and resistive losses of the front metal grid. One commonly sought-after goal is the creation of high aspect-ratio metal fingers ...
Nature Publishing Group2017
, , ,
Hydrogenated amorphous silicon (alpha-Si:H) has been used for decades doped and as intrinsic absorber layers in thin-film silicon solar cells. Whereas their effiency was improved for a long time by the deposition of higher quality absorber layers, recent i ...