Publication

Minimizing Trilateration Errors in the Presence of Uncertain Landmark Positions

Alexander Bahr
2007
Conference paper
Abstract

Trilateration is a technique for position estimation from range measurements which is often used in robot navigation. Most applications assume that there is no error associated with the landmarks used for trilateration. In cooperative navigation, in which groups of robots use each other as mobile beacons for position estimation, it is imperative to take the uncertainty in the beacon position into account. In this paper, we model the position uncertainty of a landmark using a multivariate Gaussian distribution and show how the uncertain landmark position translates to an uncertainty in the trilaterated position. We provide insights into how the optimal trilateration point for a fixed geometry of landmarks depends on the distribution of the position error. This provides a metric for guiding the motion of a robot to maintain favorable trilateration geometries when navigating relative to other robots whose positions are imprecisely known.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.