Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Dispersion corrected atom centered potentials (DCACPs) have been shown to significantly improve the density functional theory (DFT) description of weak interactions. In this work, we have calibrated a DCACP for sulfur in combination with the widely used Generalized Gradient Approximation (GGA) BLYP, thereby augmenting the existing library of DCACPs for the first- and second-row elements H, C, N, O, and rare gases. Three weakly bound complexes as well as elemental (orthorhombic) sulfur are used as test cases to evaluate the transferability of the DCACP to different chemical environments. It is found that the sulfur DCACP systematically improves the agreement of DFT-calculated weak interactions with respect to MP2 and CCSD(T) level results.
Lesya Shchutska, Yiming Li, Yi Zhang, Alexey Boyarsky, Raffaele Tito D'Agnolo, Enrico Bertuzzo, Wei Liu, Ji Hyun Kim, Zheng Wang, Jing Li, Zhen Liu, Wenjing Wu, Francesco Cerutti, Martin Bauer, Patrick Foldenauer, Karan Kumar, Saurabh Nangia, Emanuele Copello