Monte Carlo simulations of quantum dot solar concentrators: ray tracing based on fluorescence mapping
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Dye-sensitized solar cells (DSCs) are one of the most promising environmental friendly and low material costs photovoltaic devices. DSCs accomplish the separation of the optical absorption and charge separation processes by the association of a sensitizer ...
Dye-sensitized solar cells (DSCs) are considered as an emerging technology in order to replace conventional silicon solar cells or thin film solar cells such as amorphous silicon, CIGS, and CdTe. Liquid electrolytes containing iodide/triiodide redox couple ...
Ion-coordinating ruthenium complexes [cis-Ru(dcbpy)(L)(NCS)(2), where dcbpy is 4,4'-dicarboxylic acid-2,2'-bipyridine and L is 1,4,7,10-tetraoxa-13-azacyclopentadecane, JK-121, or bis(2-(2-methoxy-ethoxy)ethyl) amine, JK-122] have been synthesized and char ...
Dye-sensitized solar cells (DSCs) constitute a novel class of hybrid organic-inorganic solar cells. At the heart of the device is a mesoporous film of titanium dioxide (TiO2) nanoparticles, which are coated with a monolayer of dye sensitive to the visible ...
Due to their fascinating optical and electronical properties, nanometer-scaled structures play an important role in solar energy conversion [1]. Nanocomposite coatings consist typically of dielectric, semiconducting or metallic nanocrystals embedded in a h ...
InAs quantum dot arrays are obtained on GaAs nanowire facets by molecular beam epitaxy. The GaAs nanowires are first grown by the gallium-assisted catalyst-free method. Decoration of the nanowire facets with InAs quantum dots is achieved only when the face ...
Present-day advanced technologies heavily rely on the exciting magnetic and spectroscopic properties of lanthanide ions. In particular, their ability to generate well-characterized and intense near-infrared (NIR) luminescence is exploited in any modern fib ...
Colloidal quantum dot (CQD) photovoltaics combine low-cost solution processibility with quantum size-effect tunability to match absorption with the solar spectrum. Recent advances in CQD photovoltaics have led to 3.6% AM1.5 solar power conversion efficienc ...
A modified polysulfide redox couple, [(CH3)4N]2S/[(CH3)4N]2Sn, in an org. solvent (3-methoxypropionitrile) was employed in CdS quantum dot-sensitized solar cells (QDSSCs), and an unprecedented energy conversion efficiency of up to 3.2% was obtained under a ...
The dye-sensitized solar cell (DSC) challenges conventional photovoltaics with its potential for low-cost prodn. and its flexibility in terms of color and design. Transient absorption spectroscopy is widely used to unravel the working mechanism of DSCs. A ...