Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Today more than 90% of the global PV market is covered by c-Si solar cells which are limited by recombination losses at the metal-semiconductor interface. This recombination path can be avoided by separating the metal from the c-Si wafer by introducing a b ...
Thin-film silicon solar cells are one possible answer to the increasing energy demand of today. Hydrogenated amorphous silicon (a-Si:H) plays a crucial role therein - as absorber layers, but also as doped layers to build p-i -n junctions. This thesis is de ...
Solar energy represents an abundant (1000 W·m-2) and seemingly cheap source of energy. One way to tap it is to transform light into electricity with photovoltaic devices. Single junction solar cells presently reach 32% conversion yield under 1-sun illumina ...
Elsevier Science B.V.2014
, ,
Basic properties of plasma-deposited amorphous and microcrystalline layers are summarized. Limitations for solar cell performance, which are a result of these basic properties are pointed out. Efficiencies and other solar cell parameters obtained for the b ...
Elsevier2013
In the case of high photovoltaic (PV) penetration into the electricity grid, the energy produced by a PV system that is effectively used (useful energy) depends on the energy yield and on how this energy is managed to avoid detrimental effects occurring at ...
Today more than ever the world needs clean energy sources and thus a fast deployment and scaling up of the photovoltaic industry. In this context improving solar cell efficiency plays a major role. In order to achieve the maximum single junction efficiency ...
To further increase the efficiency of multijunction thin-film silicon (TF-Si) solar cells, it is crucial for the front electrode to have a good transparency and conduction, to provide efficient light trapping for each subcell, and to ensure a suitable morp ...
A micro-power energy harvesting system based on core(crystalline Si)-shell(amorphous Si) nanowire solar cells together with a nanowire-modified CMOS sensing platform have been developed to be used in a dust-sized autonomous chemical sensor node. The mote ( ...
This thesis investigates the link between the plasma deposition conditions and microcrystalline silicon (μc-Si:H) material quality for thin-film silicon photovoltaic applications. The role of interfaces and the μc-Si:H material quality on the device perfor ...
We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the ...