**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Part load flow in radial centrifugal pumps

Abstract

Centrifugal pumps are required to sustain a stable operation of the system they support under all operating conditions. Minor modifications of the surfaces defining the pump's water passage can influence the tendency to unstable system operation significantly. The action of such modifications on the flow are yet not fully understood, leading to costly trial and error approaches in the solution of instability problems. The part-load flow in centrifugal pumps is inherently time-dependent due to the interaction of the rotating impeller with the stationary diffuser (Rotor-Stator Interaction, RSI). Furthermore, adverse pressure gradients in the pump diffuser may cause flow separation, potentially inducing symmetry-breaking non-uniformities, either spatially stationary or rotating and either steady or intermittent. Rotating stall, characterized by the presence of distinct cells of flow separation on the circumference, rotating at a fraction of the impeller revolution rate, has been observed in thermal and hydraulic turbomachines. Due to its complexity, the part-load flow in radial centrifugal pumps is a major challenge for numerical flow simulation methods. The present study investigates the part-load flow in radial centrifugal pumps and pump-turbines by experimental and numerical methods, the latter using a finite volume discretization of the Reynolds-averaged Navier-Stokes (RANS) equation. Physical phenomena of part load flow are evidenced based on three case studies, and the ability of numerical simulation methods to reproduce part-load flow in radial centrifugal pumps qualitatively and quantitatively is assessed. A numerical study of the flow in a high specific speed radial pump-turbine using steady approaches and the hypothesis of angular periodicity between neighboring blade channels evidences the relation of sudden flow topology changes with an increase of viscous losses, impacting on the energy-discharge characteristic, and thus increasing the risk of unstable operation. When the flow rate drops below a critical threshold, the straight through-flow with flow separation zones attached to the guide vanes changes to an asymmetrical flow. Energy is drawn off the mean flow and dissipated in a large vortex-like structure. Besides flow separation in some diffuser channels, time-dependent numerical simulations of the flow in a double suction pump evidence a flow rate imbalance between both impeller sides interacting with asymmetric flow separation in the diffuser. Viscous losses increase substantially as this imbalance occurs, the resulting segment of positive slope in the energy-discharge characteristic is found for a flow rate sensibly different from measurements. Different modes of rotating stall are identified by transient pressure measurements in a low-specific-speed pump-turbine, showing 3 to 5 zones of separated flow, rotating at 0.016 to 0.028 times impeller rotation rate, depending on discharge. For operating conditions where stall with 4 cells is most pronounced, velocity is measured by Laser-Doppler methods at locations of interest. The velocity field is reconstructed with respect to the passage of stall cells by definition of a stall phase obtained from simultaneous transient pressure measurements. Time-dependent numerical simulation predicting rotating stall with 4 cells shows velocity fields that are in reasonable agreement with the measured velocity fields, but occurring at a sensibly higher flow rate than found from experiments. In consideration of the quantitative shortcomings of the numerical simulation, a novel modelling approach is proposed: Replacing the costly 3-dimensional simulation of the major part of the impeller channels by a 1-dimensional model allows a significant economy in computational resources, allowing an improved modeling for the remainder of the domain at constant computational cost. The model is validated with the challenging cases of rotating stall and impeller side flow rate imbalance. The satisfying coherence of the results with the simulation including the entire impeller channels qualifies this approach for numerous turbomachinery applications. It could also provide improved, time-dependent boundary conditions for draft tube vortex rope simulations at reasonable computational cost. Parameter studies modifying deliberately some quantities of mean flow and turbulence at the modeled boundary surfaces can be implemented in the framework of the method.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (10)

Related publications (7)

Related MOOCs (29)

Energy

In physics, energy () is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light. Energy is a conserved quantity—the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The unit of measurement for energy in the International System of Units (SI) is the joule (J).

Direct numerical simulation

A direct numerical simulation (DNS) is a simulation in computational fluid dynamics (CFD) in which the Navier–Stokes equations are numerically solved without any turbulence model. This means that the whole range of spatial and temporal scales of the turbulence must be resolved. All the spatial scales of the turbulence must be resolved in the computational mesh, from the smallest dissipative scales (Kolmogorov microscales), up to the integral scale , associated with the motions containing most of the kinetic energy.

Numerical analysis

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.

Plasma Physics and Applications [retired]

The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications

Plasma Physics and Applications

The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Marco Picasso, Alexandre Caboussat, Gilles Steiner, Arwa Mrad

We present a numerical model for the simulation of 3D poly-dispersed sediment transport in a Newtonian flow with free surfaces. The physical model is based on a mixture model for multiphase flows. The

The objective of this project is to analyse welding processes in high strength low-carbon steel grade S690 in numerical simulation with MORFEO codes and in experiments with a Gleeble® thermo-mechanica

2013We present a numerical model for the simulation of 3D mono-dispersed sediment dynamics in a Newtonian flow with free surfaces. The physical model is a macroscopic model for the transport of sediment b