Publication

Fingerprinting: Bounding the Soft-Error Detection Latency and Bandwidth

Babak Falsafi
2004
Conference paper
Abstract

Recent studies have suggested that the soft-error rate in microprocessor logic will become a reliability concern by 2010. This paper proposes an efficient error detection technique, called fingerprinting, that detects differences in execution across a dual modular redundant (DMR) processor pair. Fingerprinting summarizes a processor's execution history in a hash- based signature; differences between two mirrored processors are exposed by comparing their fingerprints. Fingerprinting tightly bounds detection latency and greatly reduces the interprocessor communication bandwidth required for checking. This paper presents a study that evaluates fingerprinting against a range of current approaches to error detection. The result of this study shows that fingerprinting is the only error detection mechanism that simultaneously allows high-error coverage, low error detection bandwidth, and high I/O performance.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (27)
Error detection and correction
In information theory and coding theory with applications in computer science and telecommunication, error detection and correction (EDAC) or error control are techniques that enable reliable delivery of digital data over unreliable communication channels. Many communication channels are subject to channel noise, and thus errors may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting such errors, while error correction enables reconstruction of the original data in many cases.
Error correction code
In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code (ECC). The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors.
Soft error
In electronics and computing, a soft error is a type of error where a signal or datum is wrong. Errors may be caused by a defect, usually understood either to be a mistake in design or construction, or a broken component. A soft error is also a signal or datum which is wrong, but is not assumed to imply such a mistake or breakage. After observing a soft error, there is no implication that the system is any less reliable than before. One cause of soft errors is single event upsets from cosmic rays.
Show more
Related publications (35)

A Generalized Adjusted Min-Sum Decoder for 5G LDPC Codes: Algorithm and Implementation

Andreas Peter Burg, Alexios Konstantinos Balatsoukas Stimming, Yifei Shen, Yuqing Ren, Hassan Harb

5G New Radio (NR) has stringent demands on both performance and complexity for the design of low-density parity-check (LDPC) decoding algorithms and corresponding VLSI implementations. Furthermore, decoders must fully support the wide range of all 5G NR bl ...
Ieee-Inst Electrical Electronics Engineers Inc2024

Low Power LDPC Decoding by Reliable Voltage Down-Scaling

Andreas Peter Burg

Low-Density Parity-Check (LDPC) decoder is among the power hungry building blocks of wireless communication systems. Voltage scaling down to Near-Threshold (NT) voltages substantially improves energy efficiency, in theory up 10x. However, tuning the voltag ...
New York2023

Polarization-Adjusted Convolutional (PAC) Codes: Sequential Decoding vs List Decoding

Andreas Peter Burg, Mohammad Rowshan

In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Arikan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called po ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2021
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.