Turbulent vortex shedding from a blunt trailing edge hydrofoil
Related publications (199)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Pulsatile jet propulsion is a highly energy-efficient swimming mode used by various species of aquatic animals that continues to inspire engineers of underwater vehicles. Here, we present a bio-inspired jet propulsor that combines the flexible hull of a je ...
In active nematic liquid crystals, activity is able to drive chaotic spatiotemporal flows referred to as active turbulence. Active turbulence has been characterized through theoretical and experimental work as a low Reynolds number phenomenon. We show that ...
We propose here a method to experimentally quantify unsteady leading-edge flow separation on aerofoils with finite thickness. The methodology relies on the computation of a leading-edge suction parameter based on measured values of the partial circulation ...
Hovering insects are limited by their physiology and need to rotate their wings at the end of each back-and-forth motion to keep the wing's leading edge ahead of its trailing edge. The wing rotation at the end of each half-stroke pushes the leading edge vo ...
Dynamic stall on airfoils negatively impacts their aerodynamic performance and can lead to structural damage. Accurate prediction and modelling of the dynamic stall loads are crucial for a more robust design of wings and blades that operate under unsteady ...
Two ways for producing a transport barrier through strong shear of the E x B poloidal flow have been investigated using GYSELA gyrokinetic simulations in a flux-driven regime. The first one uses an external poloidal momentum (i.e. vorticity) source that lo ...
Ring vortices are efficient at transporting fluid across long distances. They can be found in nature in various ways: they propel squids, inject blood in the heart, and entertain dolphins. These vortices are generally produced by ejecting a volume of fluid ...
Vortex rings are very efficient at transporting fluid on long distances and can generate large forces, either thrust or drag. These abilities are influenced by the vorticity distribution within the vortex. Previous work on vortices produced by piston-cylin ...
Particle dispersion in a periodic channel is studied using the elliptic relaxation hybrid RANS/LES (ER-HRL) model. This approach employs a four-equation linear eddy viscosity (LEV) model while in Reynolds Averaged Navier-Stokes (RANS) mode near the wall, a ...
Biological flapping wing fliers operate efficiently and robustly in a wide range of flight conditions and are a great source of inspiration to engineers. The unsteady aerodynamics of flapping wing flight are dominated by large-scale vortical structures tha ...