Publication

Particle subgrid scale modeling in hybrid RANS/LES of turbulent channel flow at low to moderate Reynolds number

Konstantin Mikityuk
2021
Journal paper
Abstract

Particle dispersion in a periodic channel is studied using the elliptic relaxation hybrid RANS/LES (ER-HRL) model. This approach employs a four-equation linear eddy viscosity (LEV) model while in Reynolds Averaged Navier-Stokes (RANS) mode near the wall, and switches to the LES Smagorinsky dynamic model in the outer flow region. We perform a systematic analysis of the dispersion of six sets of particles having Stokes numbers St = 0.2, 1, 5, 15, 25, 125 at shear Reynolds numbers of Reτ=150, 590. To account for the effect of the unresolved scales on particle dispersion, a novel subgrid-scale model (SGS) is proposed based on the wall-normal RMS of the velocity transport equation. The ER-HRL model is validated against DNS and LES databases, with a globally good agreement. For higher Reynolds number i.e. Reτ = 590, the model, with a much coarser grid, outperforms the LES subgrid stochastic acceleration (LES-SSAM) approach.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.