Publication

Time-domain optical coherence tomography with digital holographic microscopy

Abstract

We show that digital holography can be combined easily with optical coherence tomography approach. Varying the reference path length is the means used to acquire a series of holograms at different depths, providing after reconstruction images of slices at different depths in the specimen thanks to the short- coherence length of light source. A metallic object, covered by a 150-µm-thick onion cell, is imaged with high resolution. Applications in ophthalmology are shown: structures of the anterior eye, the cornea, and the iris, are studied on enucleated porcine eyes. Tomographic images of the iris border close to the pupil were obtained 165 µm underneath the eye surface.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.