**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Path integral evaluation of equilibrium isotope effects

Abstract

A general and rigorous methodology to compute the quantum equilibrium isotope effect is described. Unlike standard approaches, ours does not assume separability of rotational and vibrational motions and does not make the harmonic approximation for vibrations or rigid rotor approximation for the rotations. In particular, zero point energy and anharmonicity effects are described correctly quantum mechanically. The approach is based on the thermodynamic integration with respect to the mass of isotopes and on the Feynman path integral representation of the partition function. An efficient estimator for the derivative of free energy is used whose statistical error is independent of the number of imaginary time slices in the path integral, speeding up calculations by a factor of ~60 at 500 K and more at room temperature. We describe the implementation of the methodology in the molecular dynamics package AMBER 10. The method is tested on three [1,5] sigmatropic hydrogen shift reactions. Because of the computational expense, we use ab initio potentials to evaluate the equilibrium isotope effects within the harmonic approximation and then the path integral method together with semiempirical potentials to evaluate the anharmonicity corrections. Our calculations show that the anharmonicity effects amount up to 30% of the symmetry reduced reaction free energy. The numerical results are compared with recent experiments of Doering et al., [J. Am. Chem. Soc. 128, 9080 (2006); J. Am. Chem. Soc.129, 2488 (2007)] confirming the accuracy of the most recent measurement on 2,4,6,7,9-pentamethyl-5-(5,5-2H2) methylene- 11,11a-dihydro- 12H-naphthacene as well as concerns about compromised accuracy, due to side reactions, of another measurement on 2-methyl-10-(10,10-2H2) methylenebicyclo [4.4.0]dec-1- ene.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (6)

Related concepts (40)

Related publications (37)

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

Path integral formulation

The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude. This formulation has proven crucial to the subsequent development of theoretical physics, because manifest Lorentz covariance (time and space components of quantities enter equations in the same way) is easier to achieve than in the operator formalism of canonical quantization.

Integral

In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, the other being differentiation. Integration started as a method to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Today integration is used in a wide variety of scientific fields.

Line integral

In mathematics, a line integral is an integral where the function to be integrated is evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are also used; contour integral is used as well, although that is typically reserved for line integrals in the complex plane. The function to be integrated may be a scalar field or a vector field. The value of the line integral is the sum of values of the field at all points on the curve, weighted by some scalar function on the curve (commonly arc length or, for a vector field, the scalar product of the vector field with a differential vector in the curve).

Marco Picasso, Paride Passelli

The p-Laplacian problem -del & sdot; ((mu + |del u|(p-2))del u) = f is considered, where mu is a given positive number. An anisotropic a posteriori residual-based error estimator is presented. The error estimator is shown to be equivalent, up to higher ord ...

Understanding looping probabilities, including the particular case of ring closure or cyclization, of fluctuating polymers (e.g., DNA) is important in many applications in molecular biology and chemistry. In a continuum limit the configuration of a polymer ...

In this paper we derive quantitative estimates in the context of stochastic homogenization for integral functionals defined on finite partitions, where the random surface integrand is assumed to be stationary. Requiring the integrand to satisfy in addition ...

2022