**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Cryptanalysis of the full MMB block cipher

Abstract

The block cipher MMB was designed by Daemen, Govaerts and Vandewalle, in 1993, as an alternative to the IDEA block cipher. We exploit and describe unusual properties of the modular multiplication in $Z_{2^{32} - 1}$, which lead to a differential attack on the full 6-round MMB cipher (both versions 1.0 and 2.0). Further contributions of this paper include detailed square and linear cryptanalysis of MMB. Concerning differential cryptanalysis (DC), we can break the full MMB with 2^118 chosen plaintexts, 2^95.91 6-round MMB encryptions and 2^64 counters, effectively bypassing the cipher's countermeasures against DC. For the square attack, we can recover the 128-bit user key for 4-round MMB with 2^34 chosen plaintexts, 2^126.32 4-round encryptions and 2^64 memory blocks. Concerning linear cryptanalysis, we present a key-recovery attack on 3-round MMB requiring 2^114.56 known-plaintexts and 2^126 encryptions. Moreover, we detail a ciphertext-only attack on 2-round MMB using 2^93.6 ciphertexts and 2^93.6 parity computations. These attacks do not depend on weak-key or weak-subkey assumptions, and are thus independent of the key schedule algorithm.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (16)

Cryptanalysis

Cryptanalysis (from the Greek kryptós, "hidden", and analýein, "to analyze") refers to the process of analyzing information systems in order to understand hidden aspects of the systems. Cryptanalysi

Differential cryptanalysis

Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block ciphers, but also to stream ciphers and cryptographic hash functions. In the broadest sense, it is the study

Cipher

In cryptography, a cipher (or cypher) is an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure. An alternative, less common ter

Related publications (27)

Loading

Loading

Loading

Linear cryptanalysis and differential cryptanalysis are the most important methods of attack against block ciphers. Their efficiency have been demonstrated against several ciphers, including the Data Encryption Standard. We prove that both of them can be considered, improved and joined in a more general statistical framework. We also show that the very same results as those obtained in the case of DES can be found without any linear analysis and we slightly improve them into an attack with theoretical complexity 242.9 We can apply another statistical attack-the ?2 cryptanalysis-on the same characteristics without a definite idea of what happens in the encryption process. It appears to be roughly as efficient as both differential and linear cryptanalysis. We propose a new heuristic method to find good characteristics. It has found an attack against DES absolutely equivalent to M. Matsui's (1994) one by following a distinct path.

1996Since the development of cryptology in the industrial and academic worlds in the seventies, public knowledge and expertise have grown in a tremendous way, notably because of the increasing, nowadays almost ubiquitous, presence of electronic communication means in our lives. Block ciphers are inevitable building blocks of the security of various electronic systems. Recently, many advances have been published in the field of public-key cryptography, being in the understanding of involved security models or in the mathematical security proofs applied to precise cryptosystems. Unfortunately, this is still not the case in the world of symmetric-key cryptography and the current state of knowledge is far from reaching such a goal. However, block and stream ciphers tend to counterbalance this lack of "provable security" by other advantages, like high data throughput and ease of implementation. In the first part of this thesis, we would like to add a (small) stone to the wall of provable security of block ciphers with the (theoretical and experimental) statistical analysis of the mechanisms behind Matsui's linear cryptanalysis as well as more abstract models of attacks. For this purpose, we consider the underlying problem as a statistical hypothesis testing problem and we make a heavy use of the Neyman-Pearson paradigm. Then, we generalize the concept of linear distinguisher and we discuss the power of such a generalization. Furthermore, we introduce the concept of sequential distinguisher, based on sequential sampling, and of aggregate distinguishers, which allows to build sub-optimal but efficient distinguishers. Finally, we propose new attacks against reduced-round version of the block cipher IDEA. In the second part, we propose the design of a new family of block ciphers named FOX. First, we study the efficiency of optimal diffusive components when implemented on low-cost architectures, and we present several new constructions of MDS matrices; then, we precisely describe FOX and we discuss its security regarding linear and differential cryptanalysis, integral attacks, and algebraic attacks. Finally, various implementation issues are considered.

The block cipher MMB was designed by Daemen, Govaerts and Vandewalle, in 1993, as an alternative to the IDEA block cipher. We exploit and describe unusual properties of the modular multiplication in ZZ232 −1 , which lead to a diﬀerential attack on the full 6-round MMB cipher (both versions 1.0 and 2.0). Further contributions of this paper include detailed square and linear cryptanalysis of MMB. Concerning diﬀerential cryptanalysis (DC), we can break the full MMB with 2118 chosen plaintexts, 295.91 6-round MMB encryptions and 264 counters, eﬀectively bypassing the cipher’s countermeasures against DC. For the square attack, we can recover the 128-bit user key for 4-round MMB with 234 chosen plaintexts, 2126.32 4-round encryptions and 264 mem- ory blocks. Concerning linear cryptanalysis, we present a key-recovery attack on 3-round MMB requiring 2114.56 known-plaintexts and 2126 en- cryptions. Moreover, we detail a ciphertext-only attack on 2-round MMB using 293.6 ciphertexts and 293.6 parity computations. These attacks do not depend on weak-key or weak-subkey assumptions, and are thus in- dependent of the key schedule algorithm.