Downgrade attackA downgrade attack, also called a bidding-down attack or version rollback attack, is a form of cryptographic attack on a computer system or communications protocol that makes it abandon a high-quality mode of operation (e.g. an encrypted connection) in favor of an older, lower-quality mode of operation (e.g. cleartext) that is typically provided for backward compatibility with older systems. An example of such a flaw was found in OpenSSL that allowed the attacker to negotiate the use of a lower version of TLS between the client and server.
Lucifer (cipher)In cryptography, Lucifer was the name given to several of the earliest civilian block ciphers, developed by Horst Feistel and his colleagues at IBM. Lucifer was a direct precursor to the Data Encryption Standard. One version, alternatively named DTD-1, saw commercial use in the 1970s for electronic banking. Lucifer uses a combination of transposition and substitution crypting as a starting point in decoding ciphers. One variant, described by Feistel in 1971, uses a 48-bit key and operates on 48-bit blocks.
Ciphertext-only attackIn cryptography, a ciphertext-only attack (COA) or known ciphertext attack is an attack model for cryptanalysis where the attacker is assumed to have access only to a set of ciphertexts. While the attacker has no channel providing access to the plaintext prior to encryption, in all practical ciphertext-only attacks, the attacker still has some knowledge of the plaintext. For instance, the attacker might know the language in which the plaintext is written or the expected statistical distribution of characters in the plaintext.
Triple DESIn cryptography, Triple DES (3DES or TDES), officially the Triple Data Encryption Algorithm (TDEA or Triple DEA), is a symmetric-key block cipher, which applies the DES cipher algorithm three times to each data block. The Data Encryption Standard's (DES) 56-bit key is no longer considered adequate in the face of modern cryptanalytic techniques and supercomputing power. A CVE released in 2016, CVE-2016-2183 disclosed a major security vulnerability in DES and 3DES encryption algorithms.
TwofishIn cryptography, Twofish is a symmetric key block cipher with a block size of 128 bits and key sizes up to 256 bits. It was one of the five finalists of the Advanced Encryption Standard contest, but it was not selected for standardization. Twofish is related to the earlier block cipher Blowfish. Twofish's distinctive features are the use of pre-computed key-dependent S-boxes, and a relatively complex key schedule. One half of an n-bit key is used as the actual encryption key and the other half of the n-bit key is used to modify the encryption algorithm (key-dependent S-boxes).
Modular multiplicative inverseIn mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. In the standard notation of modular arithmetic this congruence is written as which is the shorthand way of writing the statement that m divides (evenly) the quantity ax − 1, or, put another way, the remainder after dividing ax by the integer m is 1.
ROT13ROT13 ("rotate by 13 places", sometimes hyphenated ROT-13) is a simple letter substitution cipher that replaces a letter with the 13th letter after it in the latin alphabet. ROT13 is a special case of the Caesar cipher which was developed in ancient Rome. Because there are 26 letters (2×13) in the basic Latin alphabet, ROT13 is its own inverse; that is, to undo ROT13, the same algorithm is applied, so the same action can be used for encoding and decoding.
Modular exponentiationModular exponentiation is exponentiation performed over a modulus. It is useful in computer science, especially in the field of public-key cryptography, where it is used in both Diffie-Hellman Key Exchange and RSA public/private keys. Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = be mod m. From the definition of division, it follows that 0 ≤ c < m.
TypexIn the history of cryptography, Typex (alternatively, Type X or TypeX) machines were British cipher machines used from 1937. It was an adaptation of the commercial German Enigma with a number of enhancements that greatly increased its security. The cipher machine (and its many revisions) was used until the mid-1950s when other more modern military encryption systems came into use. Like Enigma, Typex was a rotor machine. Typex came in a number of variations, but all contained five rotors, as opposed to three or four in the Enigma.
Index of coincidenceIn cryptography, coincidence counting is the technique (invented by William F. Friedman) of putting two texts side-by-side and counting the number of times that identical letters appear in the same position in both texts. This count, either as a ratio of the total or normalized by dividing by the expected count for a random source model, is known as the index of coincidence, or IC for short. Because letters in a natural language are not distributed evenly, the IC is higher for such texts than it would be for uniformly random text strings.