Human–robot interactionHuman–robot interaction (HRI) is the study of interactions between humans and robots. Human–robot interaction is a multidisciplinary field with contributions from human–computer interaction, artificial intelligence, robotics, natural language processing, design, and psychology. A subfield known as physical human–robot interaction (pHRI) has tended to focus on device design to enable people to safely interact with robotic systems. Human–robot interaction has been a topic of both science fiction and academic speculation even before any robots existed.
Experiential learningExperiential learning (ExL) is the process of learning through experience, and is more narrowly defined as "learning through reflection on doing". Hands-on learning can be a form of experiential learning, but does not necessarily involve students reflecting on their product. Experiential learning is distinct from rote or didactic learning, in which the learner plays a comparatively passive role. It is related to, but not synonymous with, other forms of active learning such as action learning, adventure learning, free-choice learning, cooperative learning, service-learning, and situated learning.
Declarative knowledgeDeclarative knowledge is an awareness of facts that can be expressed using declarative sentences, like knowing that Princess Diana died in 1997. It is also called theoretical knowledge, descriptive knowledge, propositional knowledge, and knowledge-that. It is not restricted to one specific use or purpose and can be stored in books or on computers. Epistemology is the main discipline studying declarative knowledge. Among other things, it studies the essential components of declarative knowledge.
Deep reinforcement learningDeep reinforcement learning (deep RL) is a subfield of machine learning that combines reinforcement learning (RL) and deep learning. RL considers the problem of a computational agent learning to make decisions by trial and error. Deep RL incorporates deep learning into the solution, allowing agents to make decisions from unstructured input data without manual engineering of the state space. Deep RL algorithms are able to take in very large inputs (e.g.
Knowledge workerKnowledge workers are workers whose main capital is knowledge. Examples include ICT Professionals, physicians, pharmacists, architects, engineers, scientists, design thinkers, public accountants, lawyers, editors, and academics, whose job is to "think for a living". Knowledge work can be differentiated from other forms of work by its emphasis on "non-routine" problem solving that requires a combination of convergent and divergent thinking. But despite the amount of research and literature on knowledge work, there is no succinct definition of the term.
Social robotA social robot is an autonomous robot that interacts and communicates with humans or other autonomous physical agents by following social behaviors and rules attached to its role. Like other robots, a social robot is physically embodied (avatars or on-screen synthetic social characters are not embodied and thus distinct) Some synthetic social agents are designed with a screen to represent the head or 'face' to dynamically communicate with users.
Military robotMilitary robots are autonomous robots or remote-controlled mobile robots designed for military applications, from transport to search & rescue and attack. Some such systems are currently in use, and many are under development. Broadly defined, military robots date back to World War II and the Cold War in the form of the German Goliath tracked mines and the Soviet teletanks. The introduction of the MQ-1 Predator drone was when "CIA officers began to see the first practical returns on their decade-old fantasy of using aerial robots to collect intelligence".
Robot navigationRobot localization denotes the robot's ability to establish its own position and orientation within the frame of reference. Path planning is effectively an extension of localisation, in that it requires the determination of the robot's current position and a position of a goal location, both within the same frame of reference or coordinates. Map building can be in the shape of a metric map or any notation describing locations in the robot frame of reference. For any mobile device, the ability to navigate in its environment is important.
Terminology extractionTerminology extraction (also known as term extraction, glossary extraction, term recognition, or terminology mining) is a subtask of information extraction. The goal of terminology extraction is to automatically extract relevant terms from a given corpus. In the semantic web era, a growing number of communities and networked enterprises started to access and interoperate through the internet. Modeling these communities and their information needs is important for several web applications, like topic-driven web crawlers, web services, recommender systems, etc.
Robotic sensingRobotic sensing is a subarea of robotics science intended to provide sensing capabilities to robots. Robotic sensing provides robots with the ability to sense their environments and is typically used as feedback to enable robots to adjust their behavior based on sensed input. Robot sensing includes the ability to see, touch, hear and move and associated algorithms to process and make use of environmental feedback and sensory data.