Fundamental theorem of algebraThe fundamental theorem of algebra, also known as d'Alembert's theorem, or the d'Alembert–Gauss theorem, states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero. Equivalently (by definition), the theorem states that the field of complex numbers is algebraically closed.
Coherent topologyIn topology, a coherent topology is a topology that is uniquely determined by a family of subspaces. Loosely speaking, a topological space is coherent with a family of subspaces if it is a topological union of those subspaces. It is also sometimes called the weak topology generated by the family of subspaces, a notion that is quite different from the notion of a weak topology generated by a set of maps. Let be a topological space and let be a family of subsets of each having the subspace topology.
Transcendental numberIn mathematics, a transcendental number is a real or complex number that is not algebraic – that is, not the root of a non-zero polynomial of finite degree with rational coefficients. The best known transcendental numbers are π and e. Though only a few classes of transcendental numbers are known – partly because it can be extremely difficult to show that a given number is transcendental – transcendental numbers are not rare: indeed, almost all real and complex numbers are transcendental, since the algebraic numbers form a countable set, while the set of real numbers and the set of complex numbers are both uncountable sets, and therefore larger than any countable set.
Automorphic formIn harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group G to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups. Modular forms are holomorphic automorphic forms defined over the groups SL(2, R) or PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms.
Infinite productIn mathematics, for a sequence of complex numbers a1, a2, a3, ... the infinite product is defined to be the limit of the partial products a1a2...an as n increases without bound. The product is said to converge when the limit exists and is not zero. Otherwise the product is said to diverge. A limit of zero is treated specially in order to obtain results analogous to those for infinite sums. Some sources allow convergence to 0 if there are only a finite number of zero factors and the product of the non-zero factors is non-zero, but for simplicity we will not allow that here.
OctonionIn mathematics, the octonions are a normed division algebra over the real numbers, a kind of hypercomplex number system. The octonions are usually represented by the capital letter O, using boldface O or blackboard bold . Octonions have eight dimensions; twice the number of dimensions of the quaternions, of which they are an extension. They are noncommutative and nonassociative, but satisfy a weaker form of associativity; namely, they are alternative. They are also power associative.
Gelfond's constantIn mathematics, Gelfond's constant, named after Aleksandr Gelfond, is e^π, that is, e raised to the power pi. Like both e and pi, this constant is a transcendental number. This was first established by Gelfond and may now be considered as an application of the Gelfond–Schneider theorem, noting that where i is the imaginary unit. Since −i is algebraic but not rational, e^π is transcendental. The constant was mentioned in Hilbert's seventh problem. A related constant is 2^, known as the Gelfond–Schneider constant.