Théorème fondamental de l'algèbreEn mathématiques, le théorème fondamental de l'algèbre, aussi appelé théorème de d'Alembert-Gauss et théorème de d'Alembert, indique que tout polynôme non constant, à coefficients complexes, admet au moins une racine. En conséquence, tout polynôme à coefficients entiers, rationnels ou encore réels admet au moins une racine complexe, car ces nombres sont aussi des complexes. Une fois ce résultat établi, il devient simple de montrer que sur C, le corps des nombres complexes, tout polynôme P est scindé, c'est-à-dire constant ou produit de polynômes de degré 1.
Topologie cohérenteLa topologie cohérente est fréquemment utilisée en topologie algébrique, notamment en lien avec les limites inductives. Ce vocable désigne à la fois une méthode assez générale pour construire une topologie mais aussi une topologie particulière des espaces vectoriels réels de dimension infinie. Soit X un espace topologique et (A) une famille de sous-espaces de X. On appelle topologie cohérente déterminée par la famille (A) la topologie la plus fine qui rende continues les injections canoniques j : A → X (topologie finale).
Nombre transcendantEn mathématiques, un nombre transcendant sur les rationnels est un nombre réel ou complexe qui n'est racine d'aucun polynôme non nuloù n est un entier naturel et les coefficients a sont des rationnels non tous nuls, ou encore (en multipliant ces n + 1 rationnels par un dénominateur commun) qui n'est racine d'aucun polynôme non nul à coefficients entiers. Un nombre réel ou complexe est donc transcendant si et seulement s’il n'est pas algébrique. Comme tout nombre rationnel est algébrique, tout nombre transcendant est donc un nombre irrationnel.
Forme automorphedroite|vignette|500x500px|La fonction êta de Dedekind est une forme automorphe dans le plan complexe. Une forme automorphique, en analyse harmonique et théorie des nombres, est une fonction d'un groupe topologique G à valeurs dans le corps des nombres complexes (ou un espace vectoriel complexe) qui est invariante sous l'action d'un sous-groupe discret du groupe topologique et qui vérifie certaines conditions de dérivabilité et de croissance à l'infini.
Produit infiniEn mathématiques, étant donné une suite de nombres complexes , on définit le produit infini de la suite comme la limite, si elle existe, des produits partiels quand N tend vers l'infini ; De même qu'une série utilise la lettre Σ, un produit infini utilise la lettre grecque Π (pi majuscule) : Dans le cas où tous les termes de la suite sont non nuls, on dit que le produit infini, noté , converge quand la suite des produits partiels converge vers une limite non nulle ; sinon, on dit que le produit infini diverg
OctonionEn mathématiques, les octonions ou octaves sont une extension non associative des quaternions. Ils forment une algèbre à huit dimensions sur le corps R des nombres réels. L’algèbre des octonions est généralement notée O. En perdant l’importante propriété d’associativité, les octonions ont reçu moins d’attention que les quaternions. Malgré cela, ils gardent leur importance en algèbre et en géométrie, notamment parmi les groupes de Lie. Les octonions ont été découverts en 1843 par , un ami de William Hamilton, qui les appela octaves.
Constante de GelfondEn mathématiques, la constante de Gelfond est le nombre réel transcendant e, c'est-à-dire e à la puissance π. Sa transcendance fut démontrée en 1929 par Alexandre Gelfond. C'est un cas particulier de son théorème de 1934. En effet, les nombres –1 (différent de 0 et 1) et –i (non rationnel) sont algébriques, or (En considérant, la détermination principale de l'argument). Cette constante fut mentionnée dans le septième problème de Hilbert. Une constante reliée est la constante de Gelfond-Schneider, 2.