Sphere packingIn geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space. However, sphere packing problems can be generalised to consider unequal spheres, spaces of other dimensions (where the problem becomes circle packing in two dimensions, or hypersphere packing in higher dimensions) or to non-Euclidean spaces such as hyperbolic space.
Four-dimensional spaceFour-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world. For example, the volume of a rectangular box is found by measuring and multiplying its length, width, and height (often labeled x, y, and z).
Homology sphereIn algebraic topology, a homology sphere is an n-manifold X having the homology groups of an n-sphere, for some integer . That is, and for all other i. Therefore X is a connected space, with one non-zero higher Betti number, namely, . It does not follow that X is simply connected, only that its fundamental group is perfect (see Hurewicz theorem). A rational homology sphere is defined similarly but using homology with rational coefficients.
Clifford torusIn geometric topology, the Clifford torus is the simplest and most symmetric flat embedding of the Cartesian product of two circles S_1 and S_1 (in the same sense that the surface of a cylinder is "flat"). It is named after William Kingdon Clifford. It resides in R4, as opposed to in R3. To see why R4 is necessary, note that if S_1 and S_1 each exists in its own independent embedding space R_2 and R_2, the resulting product space will be R4 rather than R3.
Hyperbolic manifoldIn mathematics, a hyperbolic manifold is a space where every point looks locally like hyperbolic space of some dimension. They are especially studied in dimensions 2 and 3, where they are called hyperbolic surfaces and hyperbolic 3-manifolds, respectively. In these dimensions, they are important because most manifolds can be made into a hyperbolic manifold by a homeomorphism. This is a consequence of the uniformization theorem for surfaces and the geometrization theorem for 3-manifolds proved by Perelman.
TorusIn geometry, a torus (: tori or toruses) is a surface of revolution generated by revolving a circle in three-dimensional space one full revolution about an axis that is coplanar with the circle. The main types of toruses include ring toruses, horn toruses, and spindle toruses. A ring torus is sometimes colloquially referred to as a donut or doughnut. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution, also known as a ring torus.
Hyperbolic 3-manifoldIn mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group).
Heegaard splittingIn the mathematical field of geometric topology, a Heegaard splitting (ˈhe̝ˀˌkɒˀ) is a decomposition of a compact oriented 3-manifold that results from dividing it into two handlebodies. Let V and W be handlebodies of genus g, and let ƒ be an orientation reversing homeomorphism from the boundary of V to the boundary of W. By gluing V to W along ƒ we obtain the compact oriented 3-manifold Every closed, orientable three-manifold may be so obtained; this follows from deep results on the triangulability of three-manifolds due to Moise.
Floer homologyIn mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold.
Borromean ringsIn mathematics, the Borromean rings are three simple closed curves in three-dimensional space that are topologically linked and cannot be separated from each other, but that break apart into two unknotted and unlinked loops when any one of the three is cut or removed. Most commonly, these rings are drawn as three circles in the plane, in the pattern of a Venn diagram, alternatingly crossing over and under each other at the points where they cross.