Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
To study recombination at the amorphous/crystalline Si (a- Si:H/c-Si) heterointerface, the amphoteric nature of silicon (Si) dangling bonds is taken into account. Modeling interface recombination measured on various test structures provides insight into the microscopic passivation mechanisms, yielding an excellent interface defect density reduction by intrinsic a-Si:H and tunable field-effect passivation by doped layers. The potential of this model's applicability to recombination at other Si heterointerfaces is demonstrated. Solar cell properties of a-Si:H/c-Si heterojunctions are in good accordance with the microscopic interface properties revealed by modeling, that are, e.g., slight asymmetries in the neutral capture cross-sections and band offsets. The importance of atomically abrupt interfaces and the difficulties to obtain them on pyramidally textured c-Si is studied in combination with transmission electron microscopy.
Audrey Marie Isabelle Morisset, Xinya Niu
, , , , ,