Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A persistent obstacle for constructing kinetic models of metabolism is uncertainty in the kinetic properties of enzymes. Currently, available methods for building kinetic models can cope indirectly with uncertainties by integrating data from different biol ...
Rigorous back analysis plays a major role in providing information to engineers for better decision-making. Most research on this topic has focused on optimization techniques. Comparative studies of data interpretation methodologies have seldom been report ...
Maximum-Entropy Distributions offer an attractive family of probability densities suitable for moment closure problems. Yet finding the Lagrange multipliers which parametrize these distributions, turns out to be a computational bottleneck for practical clo ...
We introduce a sequence-dependent coarse-grain model of double-stranded DNA with an explicit description of both the bases and the phosphate groups as interacting rigid-bodies. The model parameters are trained on extensive, state-of-the-art large scale mol ...
Estimation of the trajectory is a fundamental problem in robotics. Introduction of additional measurements in a robotic platform reduces the uncertainty in the trajectory estimate. The limitations on the power and payload in a UAV platform advocates for th ...
Maximum-Entropy Distributions offer an attractive family of probability densities suitable for moment closure problems. Yet finding the Lagrange multipliers which parametrize these distributions, turns out to be a computational bottleneck for practical clo ...
The proliferation of (low-cost) sensors provokes new challenges in data fusion. This is related to the correctness of stochastic characterization that is a prerequisite for optimal estimation of parameters from redundant observations. Different (statistica ...
A novel approach is presented for constructing polynomial chaos representations of scalar quantities of interest (QoI) that extends previously developed methods for adaptation in Homogeneous Chaos spaces. In this work, we develop a Bayesian formulation of ...
A well-known first-order method for sampling from log-concave probability distributions is the Unadjusted Langevin Algorithm (ULA). This work proposes a new annealing step-size schedule for ULA, which allows to prove new convergence guarantees for sampling ...
Two characteristics that make convex decomposition algorithms attractive are simplicity of operations and generation of parallelizable structures. In principle, these schemes require that all coordinates update at the same time, i.e., they are synchronous ...