Publication

Sparse Probabilistic Classifiers

2007
Conference paper
Abstract

The scores returned by support vector machines are often used as a confidence measures in the classification of new examples. However, there is no theoretical argument sustaining this practice. Thus, when classification uncertainty has to be assessed, it is safer to resort to classifiers estimating conditional probabilities of class labels. Here, we focus on the ambiguity in the vicinity of the boundary decision. We propose an adaptation of maximum likelihood estimation, instantiated on logistic regression. The model outputs proper conditional probabilities into a user-defined interval and is less precise elsewhere. The model is also sparse, in the sense that few examples contribute to the solution. The computational efficiency is thus improved compared to logistic regression. Furthermore, preliminary experiments show improvements over standard logistic regression and performances similar to support vector machines.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.