Volterra Series for Analyzing MLP based Phoneme Posterior Probability Estimator
Related publications (34)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We investigate the use of the log-likelihood of the features obtained from a generative Gaussian mixture model, and the posterior probability of phonemes from a discriminative multilayered perceptron in multi-stream combination for recognition of phonemes. ...
In this thesis, we investigate the use of posterior probabilities of sub-word units directly as input features for automatic speech recognition (ASR). These posteriors, estimated from data-driven methods, display some favourable properties such as increase ...
We investigate the use of the log-likelihood of the features obtained from a generative Gaussian mixture model, and the posterior probability of phonemes from a discriminative multilayered perceptron in multi-stream combination for recognition of phonemes. ...
In this paper, we further investigate the large vocabulary continuous speech recognition approach to keyword spotting. Given a speech utterance, recognition is performed to obtain a word lattice. The posterior probability of keyword hypotheses in the latti ...
In this paper, we analyze the confusions patterns at three places in the hybrid phoneme recognition system. The confusions are analyzed at the pronunciation, the posterior probability, and the phoneme recognizer levels. The confusions show significant stru ...
In this thesis, we investigate the use of posterior probabilities of sub-word units directly as input features for automatic speech recognition (ASR). These posteriors, estimated from data-driven methods, display some favourable properties such as increase ...
We consider the problem of binary classification where the classifier may abstain instead of classifying each observation. The Bayes decision rule for this setup, known as Chow’s rule, is defined by two thresholds on posterior probabilities. From simple des ...
In this thesis, we investigate the use of posterior probabilities of sub-word units directly as input features for automatic speech recognition (ASR). These posteriors, estimated from data-driven methods, display some favourable properties such as increase ...
In this paper, we analyze the confusions patterns at three places in the hybrid phoneme recognition system. The confusions are analyzed at the pronunciation, the posterior probability, and the phoneme recognizer levels. The confusions show significant stru ...
The paper proposes and discusses a machine approach for identification of unexpected (zero or low probability) words. The approach is based on use of two parallel recognition channels, one channel employing sensory information from the speech signal togeth ...