Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Face detection is the first step in many visual processing systems like face recognition, emotion recognition and lip reading. In this paper, we propose a novel feature called Haar Local Binary Pattern (HLBP) feature for fast and reliable face detection, particularly in adverse imaging conditions. This binary feature compares bin values of Local Binary Pattern histograms calculated over two adjacent image subregions. These subregions are similar to those in the Haar masks, hence the name of the feature. They capture the region-specific variations of local texture patterns and are boosted using AdaBoost in a framework similar to that proposed by Viola and Jones. Preliminary results obtained on several standard databases show that it competes well with other face detection systems, especially in adverse illumination conditions.
Touradj Ebrahimi, Yuhang Lu, Zewei Xu
Sébastien Marcel, André Anjos, Ivana Chingovska