Face detection is a computer technology being used in a variety of applications that identifies human faces in digital images. Face detection also refers to the psychological process by which humans locate and attend to faces in a visual scene.
Face detection can be regarded as a specific case of object-class detection. In object-class detection, the task is to find the locations and sizes of all objects in an image that belong to a given class. Examples include upper torsos, pedestrians, and cars.
Face detection simply answers two question, 1. are there any human faces in the collected images or video? 2. where is the face located?
Face-detection algorithms focus on the detection of frontal human faces. It is analogous to image detection in which the image of a person is matched bit by bit. Image matches with the image stores in database. Any facial feature changes in the database will invalidate the matching process.
A reliable face-detection approach based on the genetic algorithm and the eigen-face technique:
Firstly, the possible human eye regions are detected by testing all the valley regions in the gray-level image. Then the genetic algorithm is used to generate all the possible face regions which include the eyebrows, the iris, the nostril and the mouth corners.
Each possible face candidate is normalized to reduce both the lighting effect, which is caused by uneven illumination; and the shirring effect, which is due to head movement. The fitness value of each candidate is measured based on its projection on the eigen-faces. After a number of iterations, all the face candidates with a high fitness value are selected for further verification. At this stage, the face symmetry is measured and the existence of the different facial features is verified for each face candidate.
Facial motion capture
Facial recognition system
Face detection is used in biometrics, often as a part of (or together with) a facial recognition system. It is also used in video surveillance, human computer interface and image database management.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Emotion recognition is the process of identifying human emotion. People vary widely in their accuracy at recognizing the emotions of others. Use of technology to help people with emotion recognition is a relatively nascent research area. Generally, the technology works best if it uses multiple modalities in context. To date, the most work has been conducted on automating the recognition of facial expressions from video, spoken expressions from audio, written expressions from text, and physiology as measured by wearables.
In and computer vision, image segmentation is the process of partitioning a into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics.
A facial recognition system is a technology potentially capable of matching a human face from a or a video frame against a database of faces. Such a system is typically employed to authenticate users through ID verification services, and works by pinpointing and measuring facial features from a given image. Development began on similar systems in the 1960s, beginning as a form of computer application. Since their inception, facial recognition systems have seen wider uses in recent times on smartphones and in other forms of technology, such as robotics.
This course provides in-depth understanding of the most fundamental algorithms in statistical pattern recognition or machine learning (including Deep Learning) as well as concrete tools (as Python sou
These lab sessions are designed as a practical companion to the course "Image Analysis and Pattern Recognition" by Prof. Thiran. The main objective is to learn how to use some important image processi
The course provides a comprehensive overview of methods, algorithms, and computer tools used in bioimage analysis. It exposes fundamental concepts and practical computer solutions to extract quantitat
The first MOOC to provide a comprehensive introduction to Internet of Things (IoT) including the fundamental business aspects needed to define IoT related products.
The advancement of face recognition technology has delivered substantial societal advantages. However, it has also raised global privacy concerns due to the ubiquitous collection and potential misuse of individuals' facial data. This presents a notable par ...
This report presents a study on the development and application of a Region-based Convolutional Neural Network, Faster RCNN and a more complex one, TransVOD, to locate solar coronal jets using data from the Solar Dynamic Observatory (SDO). The study focus ...
2024
, ,
Recent years have witnessed significant advance- ment in face recognition (FR) techniques, with their applications widely spread in people’s lives and security-sensitive areas. There is a growing need for reliable interpretations of decisions of such syste ...