**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Sparse Probabilistic Classifiers

2007

Report or working paper

Report or working paper

Abstract

The scores returned by support vector machines are often used as a confidence measures in the classification of new examples. However, there is no theoretical argument sustaining this practice. Thus, when classification uncertainty has to be assessed, it is safer to resort to classifiers estimating conditional probabilities of class labels. Here, we focus on the ambiguity in the vicinity of the boundary decision. We propose an adaptation of maximum likelihood estimation, instantiated on logistic regression. The model outputs proper conditional probabilities into a user-defined interval and is less precise elsewhere. The model is also sparse, in the sense that few examples contribute to the solution. The computational efficiency is thus improved compared to logistic regression. Furthermore, preliminary experiments show improvements over standard logistic regression and performances similar to support vector machines.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (32)

Related MOOCs (4)

Related publications (63)

Selected Topics on Discrete Choice

Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t

Selected Topics on Discrete Choice

Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t

Neuronal Dynamics - Computational Neuroscience of Single Neurons

The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.

Logistic regression

In statistics, the logistic model (or logit model) is a statistical model that models the probability of an event taking place by having the log-odds for the event be a linear combination of one or more independent variables. In regression analysis, logistic regression (or logit regression) is estimating the parameters of a logistic model (the coefficients in the linear combination).

Multinomial logistic regression

In statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.).

Linear regression

In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.

Herein, machine learning (ML) models using multiple linear regression (MLR), support vector regression (SVR), random forest (RF) and artificial neural network (ANN) are developed and compared to predict the output features viz. specific capacitance (Csp), ...

Julien René Pierre Fageot, Adrien Raphaël Depeursinge, Daniel Abler

Assessing the individual risk of Major Adverse Cardiac Events (MACE) is of major importance as cardiovascular diseases remain the leading cause of death worldwide. Quantitative Myocardial Perfusion Imaging (MPI) parameters such as stress Myocardial Blood F ...

Jérôme Chenal, Vitor Pessoa Colombo, Jürg Utzinger

In addition to individual practices and access to water, sanitation, and hygiene (WASH) facilities, housing conditions may also be associated with the risk of diarrhea. Our study embraced a broad approach to health determinants by looking at housing depriv ...

2023