Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Let T be a triangulated surface given by the list of vertex-triples of its triangles, called rooms. A room-partitioning of T is a subset R of the rooms such that each vertex of T is in exactly one room in R. We prove that if T has a room-partitioning R, then there is another room-partitioning of T which is different from R. The proof is a simple algorithm which walks from room to room, which however we show to be exponential by constructing a sequence of (planar) instances, where the algorithm walks from room to room an exponential number of times relative to the number of rooms in the instance. We unify the above theorem with Nash’s theorem stating that a 2-person game has an equilibrium, by proving a combinatorially simple common generalization.
, ,