René Maurice FréchetRené Maurice Fréchet (ʁəne mɔʁis fʁeʃɛ, moʁ-; 2 September 1878 – 4 June 1973) was a French mathematician. He made major contributions to general topology and was the first to define metric spaces. He also made several important contributions to the field of statistics and probability, as well as calculus. His dissertation opened the entire field of functionals on metric spaces and introduced the notion of compactness. Independently of Riesz, he discovered the representation theorem in the space of Lebesgue square integrable functions.
Minkowski–Bouligand dimensionIn fractal geometry, the Minkowski–Bouligand dimension, also known as Minkowski dimension or box-counting dimension, is a way of determining the fractal dimension of a set in a Euclidean space , or more generally in a metric space . It is named after the Polish mathematician Hermann Minkowski and the French mathematician Georges Bouligand. To calculate this dimension for a fractal , imagine this fractal lying on an evenly spaced grid and count how many boxes are required to cover the set.
Sequential spaceIn topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces (especially metric spaces) are sequential. In any topological space if a convergent sequence is contained in a closed set then the limit of that sequence must be contained in as well. This property is known as sequential closure.
Fréchet manifoldIn mathematics, in particular in nonlinear analysis, a Fréchet manifold is a topological space modeled on a Fréchet space in much the same way as a manifold is modeled on a Euclidean space. More precisely, a Fréchet manifold consists of a Hausdorff space with an atlas of coordinate charts over Fréchet spaces whose transitions are smooth mappings.