Summary
René Maurice Fréchet (ʁəne mɔʁis fʁeʃɛ, moʁ-; 2 September 1878 – 4 June 1973) was a French mathematician. He made major contributions to general topology and was the first to define metric spaces. He also made several important contributions to the field of statistics and probability, as well as calculus. His dissertation opened the entire field of functionals on metric spaces and introduced the notion of compactness. Independently of Riesz, he discovered the representation theorem in the space of Lebesgue square integrable functions. He is often referred to as the founder of the theory of abstract spaces. He was born to a Protestant family in Maligny to Jacques and Zoé Fréchet. At the time of his birth, his father was a director of a Protestant orphanage in Maligny and was later in his youth appointed a head of a Protestant school. However, the newly established Third Republic was not sympathetic to religious education and so laws were enacted requiring all education to be secular. As a result, his father lost his job. To generate some income his mother set up a boarding house for foreigners in Paris. His father was able later to obtain another teaching position within the secular system – it was not a job of a headship, however, and the family could not expect as high standards as they might have otherwise. Maurice attended the secondary school Lycée Buffon in Paris where he was taught mathematics by Jacques Hadamard. Hadamard recognised the potential of young Maurice and decided to tutor him on an individual basis. After Hadamard moved to the University of Bordeaux in 1894, Hadamard continuously wrote to Fréchet, setting him mathematical problems and harshly criticising his errors. Much later Fréchet admitted that the problems caused him to live in a continual fear of not being able to solve some of them, even though he was very grateful for the special relationship with Hadamard he was privileged to enjoy. After completing high-school Fréchet was required to enroll in military service.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.