Asymptotics near ±m of the spectral shift function for Dirac operators with non-constant magnetic fields
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The discovery of multiple coexisting magnetic phases in the crystallographically homogeneous compound Ca3Co2O6 has stimulated ongoing research activity. In recent years the main focus has been on the zero-field-state properties, where exceedingly long time ...
This thesis investigates the magnetic properties of single atoms and molecules adsorbed on thin magnesium oxide decoupling layers, grown on a silver single crystal. To address these systems experimentally, we use a low temperature scanning tunneling micros ...
We report a combined polarized and unpolarized neutron diffraction study on a multiferroic Sr2CoSi2O7 (SCSO) single crystal below and above the antiferromagnetic ordering temperature TN = 6.5 K. Unpolarized neutron diffraction measurements at 15 K confirm ...
We study the evolution of magnetic fields coupled with chiral fermion asymmetry in the framework of chiral magnetohydrodynamics with zero initial total chirality. The initial magnetic field has a turbulent spectrum peaking at a certain characteristic scale ...
Parity-time symmetry plays an essential role for the formation of Dirac states in Dirac semimetals. So far, all of the experimentally identified topologically nontrivial Dirac semimetals (DSMs) possess both parity and time reversal symmetry. The realizatio ...
In this thesis, we discuss the problems of scattering and optical manipulation related to nanosystems of different complexities. The multipolar decomposition method is used to represent scattering processes in nanosystems as a series of elementary excitati ...
Magnons (spin waves, SWs) are elementary spin excitations in magnetically ordered materials. They are the promising quanta for the transmission and processing of information. Magnons can be coupled to the electromagnetic waves utilized for the wireless com ...
By combining two independent approaches, inelastic neutron-scattering measurements and density-functionaltheory calculations, we study the spin waves in the collinear antiferromagnetic phase (AFM2) of Mn5Si3. We obtain its magnetic ground-state properties ...
Recent neutron-diffraction experiments in honeycomb CrI3 quasi-2D ferromagnets have evinced the existence of a gap at the Dirac point in their spin-wave spectra. The existence of this gap has been attributed to strong in-plane Dzyaloshinskii-Moriya or Kita ...
CrBr3 is an excellent realization of the two-dimensional honeycomb ferromagnet, which offers a bosonic equivalent of graphene with Dirac magnons and topological character. We perform inelastic neutron scattering measurements using state-of-the-art instrume ...