Adherent pointIn mathematics, an adherent point (also closure point or point of closure or contact point) of a subset of a topological space is a point in such that every neighbourhood of (or equivalently, every open neighborhood of ) contains at least one point of A point is an adherent point for if and only if is in the closure of thus if and only if for all open subsets if This definition differs from that of a limit point of a set, in that for a limit point it is required that every neighborhood of contains at least
Geometrical frustrationIn condensed matter physics, the term geometrical frustration (or in short: frustration) refers to a phenomenon where atoms tend to stick to non-trivial positions or where, on a regular crystal lattice, conflicting inter-atomic forces (each one favoring rather simple, but different structures) lead to quite complex structures. As a consequence of the frustration in the geometry or in the forces, a plenitude of distinct ground states may result at zero temperature, and usual thermal ordering may be suppressed at higher temperatures.
Boundary (topology)In topology and mathematics in general, the boundary of a subset S of a topological space X is the set of points in the closure of S not belonging to the interior of S. An element of the boundary of S is called a boundary point of S. The term boundary operation refers to finding or taking the boundary of a set. Notations used for boundary of a set S include and . Some authors (for example Willard, in General Topology) use the term frontier instead of boundary in an attempt to avoid confusion with a different definition used in algebraic topology and the theory of manifolds.
Topological defectTopological defects or solitons are irregularities or disruptions that occur within continuous fields or ordered states of matter. These defects, which can take various forms such as points, lines, or surfaces, are characterized by their stability and the fact that they cannot be 'smoothed out' or removed through continuous transformations of the field or material. They play a significant role in various areas of physics, including condensed matter physics, cosmology, and quantum field theory, and can have profound effects on the properties and behavior of the systems in which they occur.