Point adhérentEn mathématiques et plus précisément en topologie, un point adhérent à une partie A d'un espace topologique E est un élément de l'adhérence de A, c'est-à-dire un point x de E tel que tout voisinage de x rencontre A (i.e. est non disjoint de A) ou encore : tout ouvert contenant x rencontre A. Tous les points de A sont adhérents à A ; d'autres points de E peuvent aussi, selon le cas, être adhérents à A. La notion de point adhérent à un ensemble A n'est pas intrinsèque, en ce sens qu'elle dépend de l'espace topologique dont A est vu comme sous-ensemble.
Frustration géométriqueExpliquer la stabilité d'un solide est une question centrale en physique de la matière condensée. Possibles dans le cas des molécules, les calculs quantiques les plus précis montrent souvent une grande diversité pour les configurations atomiques de faible énergie. Du fait de leur taille macroscopique, et donc du nombre astronomique d'atomes mis en jeu, la même étude pour les solides impose que de nombreuses approximations soient faites pour calculer leur énergie de cohésion.
Frontière (topologie)En topologie, la frontière d'un ensemble (aussi appelé parfois "le bord d'un ensemble") est constituée des points qui, de façon intuitive, sont « situés au bord » de cet ensemble, c’est-à-dire qui peuvent être « approchés » à la fois par l'intérieur et l'extérieur de cet ensemble. Soit S un sous-ensemble d'un espace topologique (E, T).
Défaut topologiqueEn cosmologie, un défaut topologique est une configuration souvent stable de matière que certaines théories prédisent avoir été formée lors des transitions de phase de l'univers primitif. Selon la nature des brisures de symétrie, on suppose la formation de nombreux solitons au travers du mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble. Les défauts topologiques les plus courants sont les monopôles magnétiques, les cordes cosmiques, les murs de domaine, les skyrmions et les textures.