Feshbach resonances in the water molecule revealed by state-selective spectroscopy
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We report on an experimental study with UV and visible ultrafast time-gated emission and transient absorption of the early photodynamics of horse heart Cytochrome c in both ferric and ferrous redox states. A clear separation in time and energy of tryptopha ...
We use triple resonance vibration overtone spectroscopy to characterize quantum states of water with up to 19 quanta of stretching vibration – the last stretching state below dissociation. State-selectivity, offered by the triple resonance in conjunction w ...
Nuclear magnetic resonance (NMR) spectroscopy can be applied in vivo to measure static or dynamic biochemical information, e.g., concentrations of metabolites and metabolic fluxes, using various nuclei such as 1H, 13C, 31P and 15N. The work of this thesis ...
Slow dynamic processes, such as biomolecular folding/unfolding, macromolecular diffusion, etc., can be conveniently monitored by solution-state two-dimensional (2D) NMR spectroscopy, provided the inverse of their rate constants does not exceed the nuclear ...
A joint experimental and first-principles quantum chemical study of the vibration-rotation states of the water molecule up to its first dissociation limit is presented. Triple-resonance, quantum state selective spectroscopy is used to probe the entire ladd ...
The enhancement of the spin-lattice relaxation rate for nuclear spins in a ligand bound to a paramagnetic metal ion [known as the paramagnetic relaxation enhancement (PRE)] arises primarily through the dipole-dipole (DD) interaction between the nuclear spi ...
We have measured the rovibrational levels in the electronic ground state of the water molecule at the previously inaccessible energies above 26000 cm-1. The use of laser double-resonance overtone excitation combined with laser-induced fluorescence (LIF) ph ...
Nuclear magnetic relaxation in the presence of paramagnetic centres has gained increasing interest in recent years partly due to its importance for contrast agents in magnetic resonance imaging. Rational design of new more efficient agents is possible as a ...
Paramagnetic solid-state NMR, extended X-ray absorption fine structure (EXAFS), and Raman spectroscopies, along with detailed quantum mechanical calculations performed with different density functional theory (DFT) functionals, are successfully applied to ...
Knowledge of proton T-2 relaxation time of metabolites is essential for proper quantitation of metabolite concentrations in localized proton spectroscopy, especially at moderate to long TEs. Although the T-2 relaxation time of singlets, such as that of cre ...